Читать книгу Эгосферные риски - В. Б. Живетин - Страница 12
Глава I. Структура эгосферы как динамической системы
1.2. Биофизическая энергетика эгосферы
1.2.1. Биофизические энергии
Общие функции гипоталамуса
ОглавлениеУ позвоночных гипоталамус представляет собой главный нервный центр, отвечающий за регуляцию внутренней среды организма. Филогенетический – это довольно старый отдел головного мозга, и поэтому у наземных млекопитающих строение его относительно одинаково, в отличие от организации таких более молодых структур, как новая кора и лимбическая система. Гипоталамус управляет всеми основными гомеостатическими процессами. Так, для поддержания жизнедеятельности животного с удаленным гипоталамусом требуются особые интенсивные меры, так как у такого животного уничтожены основные гомеостатические механизмы.
Принцип гомеостаза заключается в том, что при самых разнообразных состояниях организма, связанных с его приспособлением к резко изменяющимся условиям окружающей среды (например, при температурных воздействиях, при интенсивной физической нагрузке), внутренняя среда остается постоянной, и параметры ее колеблются лишь в очень узких пределах. Наличие и высокая эффективность механизмов гомеостаза у млекопитающих, и в частности у человека, обеспечивают возможность их жизнедеятельности при значительных изменениях окружающей среды. Животные, неспособные поддерживать некоторые параметры внутренней среды, вынуждены жить в более узком диапазоне параметров окружающей среды. Например, способность лягушек к терморегуляции настолько ограничена, что для того, чтобы выжить в условиях зимних холодов, им приходится опускаться на дно водоемов, где вода не замерзает. Напротив, многие млекопитающие зимой могут вести столь же свободное существование, что и летом, несмотря на значительные колебания температуры.
Афферентные и эфферентные связи гипоталамуса. Организация таких связей свидетельствует о том, что он служит важным интегративным центром для соматических, вегетативных и эндокринных функций. Латеральный гипоталамус образует двухсторонние связи с верхними отделами ствола мозга, центральным серым веществом среднего мозга и с лимбической системой. Чувствительные сигналы от поверхности тела и внутренних органов (чакр) поступают в гипоталамус по восходящим спинобульборетикулярным путям, которые ведут в гипоталамус либо через таламус, либо через лимбическую область среднего мозга. Остальные афферентные сигналы поступают в гипоталамус по полисинаптическим путям, которые пока еще не все идентифицированы.
Эфферентные связи гипоталамуса с вегетативными и соматическими ядрами ствола мозга и спинного мозга образованы полисинаптическими путями, идущими в составе ретикулярной формации. Медиальный гипоталамус обладает двусторонними связями с латеральным, кроме того, он непосредственно получает сигналы от некоторых остальных отделов головного мозга. В медиальной области гипоталамуса существуют особые нейроны, воспринимающие важнейшие параметры крови и спинно-мозговой жидкости, т. е. эти нейроны следят за состоянием внутренней среды организма. Они могут воспринимать, например, температуру крови, водно-электролитный состав плазмы или содержание гормонов в крови. Через нервные механизмы медиальная область гипоталамуса управляет деятельностью нейрогипофиза, а через гормональные – аденогипофиза. Таким образом, эта область служит промежуточным звеном между нервной и эндокринной системами.
Нейронная организация гипоталамуса, благодаря которой это небольшое образование способно управлять множеством жизненно важных поведенческих реакций и нейрогуморальных регуляторных процессов, остается загадкой. Возможно, группы нейронов гипоталамуса, отвечающие за выполнение какой-либо функции, отличаются друг от друга афферентными и эфферентными связями, медиаторами, расположением дендритов и т. п.
Можно предположить, что в малоизученных нами нервных цепях гипоталамуса заложены многочисленные программы. Активизация этих программ под влиянием нервных сигналов от вышележащих отделов мозга (например, лимбической системы) и сигналов от рецепторов и внутренней среды организма может приводить к различным поведенческим и нейрогуморальным регуляторным реакциям. Все это подлежит тщательному изучению с помощью таких средств, как идентификация и моделирование.
Рассмотрим систему формирования биофизической эгоэнергии Е3. На рис. 1.10 А приведена блок-схема системы формирования энергетики Е3 и ее распределения, созданная с учетом работ Ананьина В.Ф. [3].
Эффекторный механизм – конечный элемент рефлекторной дуги (мышца, железа), изменение состояния которого служит показателем осуществления рефлекса.
Каналы поступления энергии (рис. 1.10 B). Основным каналом (источником) поступления энергии являются органы пищеварения, в которых синтезируются элементы энергетики. Рецепторный аппарат (совокупность подсистем) включает:
экстерорецепторы – специализированные чувствительные образования, воспринимающие световые, звуковые, тепловые и другие раздражения (энергетики) из внешней среды, расположены в органах зрения, слуха, кожи;
интерорецепторы – чувствительные нервные окончания, воспринимающие раздражение из внутренней среды организма.
Мышцы, скелетная мускулатура, внутренние органы в совокупности представляют собой сложную систему формирования и затрат энергии.
Рис. 1.10
На рис. 1.10 введены обозначения:
(Е3)δ, (Е3)г – энергетический потенциал, содержащийся в белке и гормонах соответственно;
Е3(1) – энергия, направленная в головной мозг;
U(Е(1)3) – управление от головного мозга ретикулярной формацией;
Е(2)3, Е(3)3 – энергии, направленные в органы, обеспечивающие их функционирование;
E(J1), E(J2) – энергии, созданные экстерорецепторами и интерорецепторами.
Роль ретикулярной формации ствола мозга заключается не только в активизации коры мозга, но и в накоплении биоэнергии, по существу, она представляет собой биоэнергоаккумулятор мозга. Одновременно ретикулярная формация является биологической «электростанцией» организма человека, которая находится в стволе мозга. Ретикулярная формация накапливает энергию в фазе медленного сна, когда энергия в нее поступает из внутренних органов. В состоянии бодрствования кора перераспределяет энергопотенциал ретикулярной формации. При стрессе вводится форсированный режим перераспределения энергии, когда кровоток направляется в зоны повышенных энергозатрат.
Отметим, что
– расход биоэнергии Е3 при стрессе и в процессе жизнедеятельности человека осуществляется через расходование адреналина и норадреналина коркового слоя надпочечников, через пигментную систему;
– распределительные способности (распределительной системы) человека зависят не от размеров мозга, а от числа связей между нейронами и скоростью их установления, т. е. энергетических параметров функционирования, включающих электрические и химические подсистемы.
Особый канал формирования энергии – канал гормональной активности, обеспечивающий энергетический обмен. В настоящее время термином «гормон» обозначают химические вещества различной природы, секретируемые железами внутренней секреции или другими тканями в кровеносные или лимфатические сосуды и оказывающие различное действие на органы – мишени. С помощью выделения многочисленных гормонов эндокринная система вместе с нервной обеспечивает существование организма как целостной структуры, координируя деятельность других органов и систем. Рассмотрим их соотношение на примере. Если бы не было эндокринной системы, то весь организм – «цех» – представлял бы собой бесконечно запутанную цепь «проводов» – нервных волокон, при этом очень часто по множеству проводов необходимо было бы отдавать одну единственную команду, которую можно передать многим клеткам с помощью одного гормонального сигнала – в виде одной «команды».
Все многообразие основных функций гормонов сводится к четырем основным: рост, репродукция и развитие организма, поддержание гомеостаза, энергетический обмен.
Разнообразие структур и функций гормонов, локализации объектов, их продуцирующих, способов их доставки к целевым клеткам делает затруднительным создание классификации гормонов (например, по химической структуре) [7]. Гормоны имеют следующие характеристики:
– наличие специализированной железы, продуцирующей данный гормон (так называемая эндокринная железа);
– дистантность его влияния, т. е. присущая ему возможность транспортировки;
– способность оказывать специфическое воздействие в тканяхмишенях при незначительной концентрации в крови.
В настоящее время различают следующие варианты действия гормонов:
– гемокринное, т. е. действие на значительном удалении от места образования;
– изокринное, или местное, когда химическое вещество, синтезированное в одной клетке, оказывает действие на клетку, расположенную в тесном контакте с первой, и высвобождение этого вещества осуществляется в межтканевую жидкость и кровь;
– нейрокринное, или нейроэндокринное (синаптическое и несинаптическое) действие, когда гормон, высвобождаясь из нервных окончаний, выполняет функцию нейротрансмиттера или нейромодулятора, т. е. вещества, изменяющего (обычно усиливающего) действие нейротрансмиттера;
– паракринное – разновидность изокринного действия, но при этом гормон, образующийся в одной клетке, поступает в межклеточную жидкость и влияет на ряд клеток, расположенных в непосредственной близости;
– аутокринное действие, когда высвобождающийся из клетки гормон оказывает влияние на ту же клетку, изменяя ее функциональную активность.
Второй способ классификации гормонов связан с местом их синтеза, третий – с их функциональными возможностями. Существует группа гормонов, регулирующая углеводный обмен (инсулин, глюкагон); гормоны, поддерживающие водно-электролитный баланс (вазопрессин, альдостерон, ангиотензин, предсердный натрийуретический фактор); группа гормонов, осуществляющая нормальную функцию половой системы (ганодолиберин, пролактин, эстрогены, протестерон, тестостерон, дигидротестостерон); регулирующие продукцию и секрецию молока молочными железами (пролактин, окситоцин и др.) и т. д.
Четвертый способ классификации связан с принципом регуляции секреции, согласно которому эндокринные железы делятся на гипофиззависимые (щитовидная железа, кора надпочечников, гонады) и гипофизнезависимые (паращитовидные железы, панкреатические островки, мозговое вещество надпочечников и др.). Гипофиззависимые железы и секретируемые ими гормоны традиционно группируются в 3 основательно автономные системы, точнее подсистемы или оси: гипоталамус – гипофиз – кора надпочечников, гипоталамус – гипофиз – щитовидная железа и гипоталамус – гипофиз – половые железы. В то же время другие гормоны гипофиза (пролактин, гормон роста, β-липотропин) не имеют представительства на периферии в виде зависимых от них эндокринных желез. Под влиянием гормона роста в печени и других органах синтезируются инсулиноподобные факторы роста, которые оказывают мощное влияние на обмен веществ.