Читать книгу Биология. Введение в общую биологию. 9 класс - В. В. Пасечник - Страница 31

Раздел 1. Уровни организации живой природы
Глава 2. Клеточный уровень
2.13. Синтез белков в клетке

Оглавление

1. Из чего состоят белки?

2. Что такое аминокислота?


Важнейшим процессом ассимиляции в клетке является синтез присущих ей белков. Каждая клетка содержит тысячи белков, в том числе и присущих только данному виду клеток. Так как в процессе жизнедеятельности все белки рано или поздно разрушаются, клетка должна непрерывно синтезировать белки для восстановления своих мембран, органоидов и т. п. Кроме того, многие клетки «изготовляют» белки для нужд всего организма, например клетки желез внутренней секреции, выделяющие в кровь белковые гормоны. В таких клетках синтез белка идет особенно интенсивно.

Синтез белка требует больших затрат энергии. Источником этой энергии, как и для всех клеточных процессов, является АТФ.

Многообразие функций белков определяется их первичной структурой, т. е. последовательностью аминокислот в их молекуле. В свою очередь наследственная информация о первичной структуре белка заключена в последовательности нуклеотидов в молекуле ДНК. Участок ДНК, в котором содержится информация о первичной структуре одного белка, называется геном. В одной хромосоме находится информация о структуре многих сотен белков.

Генетический код. Каждой аминокислоте белка в ДНК соответствует последовательность из трех расположенных друг за другом нуклеотидов – триплет. К настоящему времени составлена карта генетического кода, т. е. известно, какие триплетные сочетания нуклеотидов ДНК соответствуют той или иной из 20 аминокислот, входящих в состав белков (рис. 33). Как известно, в состав ДНК могут входить четыре азотистых основания: аденин (А), гуанин (Г), тимин (Т) и цитозин (Ц). Число сочетаний из 4 по 3 составляет: 43 = 64, т. е. можно закодировать 64 различные аминокислоты, тогда как кодируется только 20 аминокислот. Оказалось, что многим аминокислотам соответствует не один, а несколько различных триплетов – кодонов. Предполагается, что такое свойство генетического кода повышает надежность хранения и передачи генетической информации при делении клеток. Например, аминокислоте аланину соответствуют 4 кодона: ЦГА, ЦГГ, ЦГТ, ЦГЦ, и получается, что случайная ошибка в третьем нуклеотиде не может отразиться на структуре белка – все равно это будет кодон аланина.


Рис. 33. Таблица генетического кода


Так как в молекуле ДНК содержатся сотни генов, то в ее состав обязательно входят триплеты, являющиеся «знаками препинания» и обозначающие начало и конец того или иного гена.

Очень важное свойство генетического кода – специфичность, т. е. один триплет всегда обозначает только одну-единственную аминокислоту. Генетический код универсален для всех живых организмов от бактерий до человека.

Транскрипция. Носителем всей генетической информации является ДНК, расположенная в ядре клетки. Сам же синтез белка происходит в цитоплазме клетки, на рибосомах. Из ядра в цитоплазму информация о структуре белка поступает в виде информационной РНК (иРНК). Для того чтобы синтезировать иРНК, участок ДНК «разматывается», деспирализуется, а затем по принципу комплементарности на одной из цепочек ДНК с помощью ферментов синтезируются молекулы РНК (рис. 34). Это происходит следующим образом: против, например, гуанина молекулы ДНК становится цитозин молекулы РНК, против аденина молекулы ДНК – урацил РНК (вспомните, что в РНК в нуклеотиды вместо тимина включен урацил), напротив тимина ДНК – аденин РНК и напротив цитозина ДНК – гуанин РНК. Таким образом, формируется цепочка иРНК, представляющая собой точную копию второй цепи ДНК (только тимин заменен на урацил). Таким образом, информация о последовательности нуклеотидов какого-либо гена ДНК «переписывается» в последовательность нуклеотидов иРНК. Этот процесс получил название транскрипции. У прокариот синтезированные молекулы иРНК сразу же могут взаимодействовать с рибосомами, и начинается синтез белка. У эукариот иРНК взаимодействует в ядре со специальными белками и переносится через ядерную оболочку в цитоплазму.


Рис. 34. Схема образования информационной РНК по матрице ДНК (транскрипция)


В цитоплазме обязательно должен быть набор аминокислот, необходимых для синтеза белка. Эти аминокислоты образуются в результате расщепления пищевых белков. Кроме того, та или иная аминокислота может попасть к месту непосредственного синтеза белка, т. е. в рибосому, только прикрепившись к специальной транспортной РНК (тРНК).

Транспортные РНК. Для переноса каждого вида аминокислот в рибосомы нужен отдельный вид тРНК. Так как в состав белков входят около 20 аминокислот, существует столько же видов тРНК. Строение всех тРНК сходно (рис. 35). Их молекулы образуют своеобразные структуры, напоминающие по форме лист клевера. Виды тРНК обязательно различаются по триплету нуклеотидов, расположенному «на верхушке». Этот триплет, получивший название антикодон, по генетическому коду соответствует той аминокислоте, которую предстоит переносить этой тРНК. К «черешку листа» специальный фермент прикрепляет обязательно ту аминокислоту, которая кодируется триплетом, комплементарным антикодону.

Трансляция. В цитоплазме происходит последний этап синтеза белка – трансляция. На тот конец иРНК, с которого нужно начать синтез белка, нанизывается рибосома (рис. 36). Рибосома перемещается по молекуле иРНК прерывисто, «скачками», задерживаясь на каждом триплете приблизительно 0,2 с. За это мгновение одна тРНК из многих способна «опознать» своим антикодоном триплет, на котором находится рибосома. И если антикодон комплементарен этому триплету иРНК, аминокислота отсоединяется от «черешка листа» и присоединяется пептидной связью к растущей белковой цепочке (рис. 37). В этот момент рибосома сдвигается по иРНК на следующий триплет, кодирующий очередную аминокислоту синтезируемого белка, а очередная тРНК «подносит» необходимую аминокислоту, наращивающую растущую цепочку белка. Эта операция повторяется столько раз, сколько аминокислот должен содержать «строящийся» белок. Когда же в рибосоме оказывается один из триплетов, являющийся «стоп-сигналом» между генами, то ни одна тРНК к такому триплету присоединиться не может, так как антикодонов к ним у тРНК не бывает. В этот момент синтез белка заканчивается. Все описываемые реакции происходят за очень маленькие промежутки времени. Подсчитано, что на синтез довольно крупной молекулы белка уходит всего около двух минут.


Рис. 35. Схема строения одной из молекул транспортной РНК: А, Б, В, Г – участки комплементарного соединения, Д – участок соединения с аминокислотой, Е – антикодон


Рис. 36. Схема синтеза белка в рибосоме (трансляция)


Рис. 37. Схема синтеза белка на полисоме


Клетке необходима не одна, а много молекул каждого белка. Поэтому как только рибосома, первой начавшая синтез белка на иРНК, продвинется вперед, за ней на ту же иРНК нанизывается вторая рибосома, синтезирующая тот же белок. Затем на иРНК последовательно нанизываются третья, четвертая рибосомы и т. д. Все рибосомы, синтезирующие один и тот же белок, закодированный в данной иРНК, называются полисомой. Когда синтез белка окончен, рибосома может найти другую иРНК и начать синтезировать тот белок, структура которого закодирована в новой иРНК.

Таким образом, трансляция – это перевод последовательности нуклеотидов молекулы иРНК в последовательность аминокислот синтезируемого белка.

Подсчитано, что все белки организма млекопитающего могут быть закодированы всего двумя процентами ДНК, содержащимися в его клетках. А для чего же нужны остальные 98 % ДНК? Оказывается, каждый ген устроен гораздо сложнее, чем считали раньше, и содержит не только тот участок, в котором закодирована структура какого-либо белка, но и специальные участки, способные «включать» или «выключать» работу каждого гена. Вот почему все клетки, например человеческого организма, имеющие одинаковый набор хромосом, способны синтезировать различные белки: в одних клетках синтез белков идет с помощью одних генов, а в других – задействованы совсем иные гены. Итак, в каждой клетке реализуется только часть генетической информации, содержащейся в ее генах.

Синтез белка требует участия большого числа ферментов. И для каждой отдельной реакции белкового синтеза требуются специализированные ферменты.

Ген. Генетический код. Триплет. Кодон. Транскрипция. Антикодон. Трансляция. Полисома.

1. Что такое транскрипция?

2. Что такое трансляция?

3. Где происходят транскрипция и трансляция?

4. Что такое полисома?

5. Почему в различных клетках какого-либо организма «работает» только часть генов?

6. Может ли существовать клетка, не способная к самостоятельному синтезу веществ?

Биология. Введение в общую биологию. 9 класс

Подняться наверх