Читать книгу Henley's Formulas, Recipes and Processes (Applied Chemistry) - Various - Страница 547
BOILER COMPOUNDS
ОглавлениеThere are three chemicals which are known to attack boiler scale. These are caustic soda, soda ash, and tannic-acid compounds, the last being derived from sumac, catechu, and the exhausted bark liquor from tanneries.
Caustic soda in large excess is injurious to boiler fittings, gaskets, valves, {122} etc. That it is injurious, in reasonable excess, to the boiler tubes themselves is yet to be proved. Foaming and priming may be caused through excess of caustic soda or soda ash, as is well known by every practical engineer. Tannic acid is to be condemned and the use of its salts is not to be recommended. It may unite with the organic matter, present in the form of albuminoids, and with calcium and magnesium carbonates. That it removes scale is an assured fact; that it removes iron with the scale is also assured, as tannic acid corrodes an iron surface rapidly.
Compounds of vegetable origin are widely advertised, but they often contain dextrine and gum, both of which are dangerous, as they coat the tubes with a compact scale, not permitting the water to reach the iron. Molasses is acid and should not be used in the boiler. Starch substances generally should be avoided. Kerosene must be dangerous, as it is very volatile and must soon leave the boiler and pass over and through the engine.
There are two materials the use of which in boilers is not prohibited through action upon the metal itself or on account of price. These are soda ash and caustic soda. Sodium triphosphate and sodium fluoride have both been used with success, but their cost is several hundred per cent greater than soda ash. If prescribed as per analysis, in slight excess, there should be no injurious results through the use of caustic soda and soda ash. It would be practicable to manufacture an intimate mixture of caustic soda and carbonate of soda, containing enough of each to soften the average water of a given district.
There is a great deal of fraud in connection with boiler compounds generally. The better class of venders advertise to prepare a special compound for special water. This is expensive, save on a large scale, in reference to a particular water, for it would mean a score or more of tanks with men to make up the mixtures. The less honest of the boiler-compound guild consign each sample of water to the sewer and send the regular goods. Others have a stock analysis which is sent to customers of a given locality, whether it contains iron, lime, or magnesium sulphates or carbonates.
Any expense for softening water in excess of 3 cents per 1,000 gallons is for the privilege of using a ready-made softener. Every superintendent in charge of a plant should insist that the compound used be pronounced by competent authority free from injurious materials, and that it be adapted to the water in use.
Boiler compounds should contain only such ingredients as will neutralize the scale-forming salts present. They should be used only by prescription, so many gallons per 1,000 gallons of feed water. A properly proportioned mixture of soda ought to answer the demands of all plants depending upon that method of softening water in limestone and shale regions.
The honest boiler compounds are, however, useful for small isolated plants, because of the simplicity of their action. For plants of from 75 to 150 horse power two 24-hour settling tanks will answer the purpose of a softening system. Each of these, capable of holding a day’s supply, provided with a soda tank in common, and with sludge valves, has paddles for stirring the contents. Large plants are operated on this principle, serving boilers of many thousand horse power. Such a system has an advantage over a continuous system, in that the exact amount of chemical solutions required for softening the particular water can be applied. For some variations of such a system, several companies have secured patents. The fundamental principles, however, have been used for many years and are not patentable.