Читать книгу El lado oscuro de la econometría - Walter Sosa Escudero - Страница 9

MAMÁ, MAMÁ, MI MODELO TIENE HETEROCEDASTICIDAD

Оглавление

Una vieja chanza de la estadística dice que los científicos aplicados creen en la distribución normal porque piensan que es un hecho de la matemática, mientras que los matemáticos creen en ella porque piensan que es un fenómeno aceptado en la ciencia aplicada.

Tengo la impresión de que algo similar pasa con los así llamados “supuestos clásicos” en econometría. Los estudiantes y practicantes tienden a darle importancia porque creen que es algo que los econometristas teóricos juzgan relevante, y estos últimos parecen respetarlos porque creen que a los economistas aplicados les son importantes. ¿Son los supuestos clásicos algo relevante a la teoría o a la práctica de la econometría? Se agrega a esta disquisición una tercera dimensión: puede que sea cierto que estos supuestos (y el modelo al cual conducen) sean relevantes en un sentido pedagógico; quizás es más útil comenzar por una estructura simple y no necesariamente realista, y luego pasar a alguna más compleja y posiblemente más apropiada para la realidad. Más o menos por las mismas razones que la física empieza con el poco realista “movimiento rectilíneo uniforme”, para luego construir un castillo que conduce a la mecánica clásica y tal vez a la física cuántica.

Más allá de estas disquisiciones, el grueso de la práctica econométrica se basa en la estimación mínimo cuadrática del modelo lineal, usando herramientas estándar (como los estadísticos “t”) a fin de evaluar hipótesis simples o construir intervalos de confianza. Los economistas tenemos una relación casi atávica con esta simple estructura, y siempre que pareció que la íbamos a abandonar, algún evento nos devolvió al vientre materno. Cuando los modelos macroestructurales amenazaron al modelo simple estimado por MCO, los vectores autorregresivos (estimados ecuación por ecuación por MCO) nos devolvieron a la realidad. Lo mismo ocurrió con la “revolución de credibilidad” (encabezada por Joshua Angrist y sus coautores), que sugirió que utilizar modelos más complejos que el combo “modelo lineal / MCO” era inútil como esterilizar un cuchillo para asesinar a un tipo, en el sentido de que cualquier sofisticación econométrica tiene un impacto menor (si alguno) en comparación con prestar atención a la estructura de identificación del problema en cuestión.

Tengo la impresión de que chequear los supuestos clásicos es como verificar si en la práctica se da el movimiento rectilíneo uniforme de la secundaria. Es más seguro pensar que no. De modo que la preocupación no es si se cumplen o no (no se cumplen), sino cuáles son las consecuencias, cuantitativas y cualitativas, de que no se cumplan. Hacer un test de heterocedasticidad en un corte transversal es más o menos como hacerle un test de embarazo a un tipo: ya sabemos la respuesta antes de hacer el test (hay heterocedasticidad). Entonces, la utilidad de un test de heterocedasticidad no es ver si simplemente la hay o no, sino si existe algún patrón de heterocedasticidad que sea relevante evaluar desde un punto de vista económico, quizás en términos de heterogeneidad, es decir, ver la presencia de heterocedasticidad no como una patología, sino como un fenómeno conceptual relevante. De esto mismo se dio cuenta David Hendry casi 40 años atrás en términos de la autocorrelación: la pregunta de si hay autocorrelación o no no es relevante en sí misma, sino desde un punto de vista de incorrecta especificación dinámica, de modo que la presencia de autocorrelación no debería conducir a “corregir la autocorrelación” sino a repensar la estructura dinámica del modelo, cuya mala especificación conduce a la autocorrelación. Este es el gran aporte a la causa de la así llamada escuela de econometría dinámica encabezada por Hendry.

El pragmatismo vigente se basa en que hacer las cosas bien es estimar consistentemente los parámetros de interés y luego poder hacer una “inferencia válida”. De ahí que, mayoritariamente, la profesión haya gravitado hacia el método de MCO acompañado de un estimador robusto de la varianza, como el de White, que es consistente haya heterocedasticidad o no. En este marco, ¿qué rol cumple el supuesto de normalidad? ¿Y el de heterocedasticidad? ¿Y el de linealidad? El de normalidad, a nadie le importa, si va a confiar en una teoría asintótica. El de heterocedasticidad, tampoco, ya que el estimador MCO y el estimador robusto son consistentes independientemente de este supuesto, precisamente. ¿Y el de linealidad? Vamos, con un R2 tan bajo (común en economía), ajusta tan mal una recta como cualquier curva suave, por compleja que sea.

Aquí coincido con el reciente texto de Bruce Hansen, en el sentido de que “chequear los supuestos” es importante en la medida en que las hipótesis nula y alternativa detrás de los supuestos sean relevantes desde un punto de vista económico y no estadístico. En este marco, la pregunta sobre la heterocedasticidad es relevante si sugiere heterogeneidad; la de correlación serial, si apunta a una dinámica más rica; y la de no normalidad, si habla de no observables asimétricos o de colas pesadas, o con fines predictivos, como es de interés en finanzas.

Quizás haya llegado la hora de abandonar los supuestos clásicos, y con ellos el teorema de Gauss Markov. A la larga, las consecuencias de que los supuestos clásicos no valgan no parecen ser terriblemente graves, y las ganancias de que se cumplan son bastante pobres (como pobre es el teorema de GM, como discutimos anteriormente). Quizás en algún momento haya reales ganancias de eficiencia en explotar las violaciones a los supuestos clásicos, es decir, acciones tales como implementar el método de mínimos cuadrados generalizados bajo heterocedasticidad. Pero, así como están las cosas, la estructura pedagógica del “modelo lineal bajo los supuestos clásicos” parece darse de patadas con la práctica habitual econométrica.

¿No habrá llegado la hora de una nueva forma de enseñar econometría?

Referencias

Angrist, J. y Pischke, J., 2010, The credibility revolution in empirical economics: How better research design is taking the con out of econometrics, Journal of Economic Perspectives, 24(2), 3-30.

Hansen, B. 2015, Econometrics, mimeo. Disponible en http://www.ssc.wisc.edu/~bhansen/econometrics/.

Hendry, D. y Mizon, G., 1978, Serial correlation as a convenient simplification, not a nuisance: Acomment on a study of the demand for money by the Bank of England, Economic Journal, 88(351), 549-63.

El lado oscuro de la econometría

Подняться наверх