Читать книгу Telescopic Work for Starlight Evenings - William F. Denning - Страница 6

CHAPTER II.
RELATIVE MERITS OF LARGE AND SMALL TELESCOPES.

Оглавление

Table of Contents

The number of large telescopes having so greatly increased in recent years, and there being every prospect that the demand for such instruments will continue, it may be well to consider their advantages as compared with those of much inferior size. Object-glasses and specula will probably soon be made of a diameter not hitherto attained; for it is palpably one of the ambitions of the age to surpass all previous efforts in the way of telescopic construction. There are some who doubt that such enormous instruments are really necessary, and question whether the results obtained with them are sufficient return for the great expense involved in their erection. Large instruments require large observatories; and the latter must be at some distance from a town, and in a locality where the atmosphere is favourable. Nothing can be done with great aperture in the presence of smoke and other vapours, which, as they cross the field, become ruinous to definition. Moreover, a big instrument is not to be manipulated with the same facility as a small one: and when anything goes wrong with it, its rectification may be a serious matter, owing to the size. Such telescopes need constant attention if they would be kept in thorough working order. On the other hand, small instruments involve little outlay, they are very portable, and require little space. They may be employed in or out of doors, according to the inclination and convenience of the observer. They are controlled with the greatest ease, and seldom get out of adjustment. They are less susceptible to atmospheric influences than larger instruments, and hence may be used more frequently with success and at places by no means favourably situated in this respect. Finally, their defining powers are of such excellent character as to compensate in a measure for feeble illumination.

In discussing this question it will be advisable to glance at the performances of certain instruments of considerable size.

The introduction of really large glasses dates from a century ago, when Sir W. Herschel mounted his reflector, 4 feet in aperture, at Slough. He discovered two of the inner satellites of Saturn very soon after it was completed; but apart from this the instrument seems to have achieved little. Herschel remarked that on August 28, 1789, when he brought the great instrument to the parallel of Saturn, he saw the spots upon the planet better than he had ever seen them before. The night was probably an exceptionally good one, for we do not find this praise reiterated. Indeed, Herschel appears to have practically discarded his large instrument for others of less size. He found that with his small specula of 7-ft. focus and 6·3-in. aperture he had “light sufficient to see the belts of Saturn completely well, and that here the maximum of distinctness might be much easier obtained than where large apertures are concerned.” Even in his sweeps for nebulæ he employed a speculum of 20-ft. focus and 18½-in. aperture in preference to his 4-ft. instrument, though on objects of this nature light-grasping power is essentially necessary. The labour and loss of time involved in controlling the large telescope probably led to its being laid aside for more ready means, though Herschel was not the man to spare trouble when an object was to be gained. His life was spent in gleaning new facts from the sky; and had the 4-foot served his purpose better than smaller instruments, no trifling obstacle would have deterred him from its constant employment. But his aim was to accomplish as much as possible in every available hour when the stars were shining, and experience doubtless taught him to rely chiefly upon his smaller appliances as being the most serviceable. The Le Mairean form, or “Front view,” which Herschel adopted for the large instrument may quite possibly have been in some degree responsible for its bad definition.

Fig. 10.


Lord Rosse’s 6-foot Reflecting-Telescope.

Lord Rosse’s 6-ft. reflector has now been used for nearly half a century, and its results ought to furnish us with good evidence as to the value of such instruments. It has done important work on the nebulæ, especially in the re-observation of the objects in Sir J. Herschel’s Catalogues of 1833 and 1864. To this instrument is due the discovery of spiral nebulæ; and perhaps this achievement is its best. But when we reflect on the length of its service, we are led to wonder that so little has been accomplished. For thirty years the satellites of Mars eluded its grasp, and then fell a prize to one of the large American telescopes. The bright planets5 have been sometimes submitted to its powers, and careful drawings executed by good observers; but they show no extent of detail beyond what may be discerned in a small telescope. This does not necessarily impugn the figure of the large speculum, the performance of which is entirely dependent upon the condition of the air. The late Dr. Robinson, of Armagh, who had the direction of the instrument for sometime, wrote in 1871:—“A stream of heated air passing before the telescope, the agitation and hygrometric state of the atmosphere, and any differences of temperature between the speculum and the air in the tube are all capable of injuring or even destroying definition, though the speculum were absolutely perfect. The effect of these disturbances is, in reflectors, as the cube of their apertures; and hence there are few hours in the year when the 6-foot can display its full powers.” Another of the regular observers, Mr. G. J. Stoney, wrote in 1878:—“The usual appearance [of the double star γ2 Andromedæ] with the best mirrors was a single bright mass of blue light some seconds in diameter and boiling violently.” On the best nights, however, “the disturbance of the air would seem now and then suddenly to cease for perhaps half a second, and the star would then instantly become two very minute round specks of white light, with an interval between which, from recollection, I would estimate as equal to the diameter of either of them, or perhaps slightly less. The instrument would have furnished this appearance uninterruptedly if the state of the air had permitted.” The present observer in charge, Dr. Boeddicker, wrote the author in 1889:—“There can be no doubt that on favourable nights the definition of the 6-foot is equal to that of any instrument, as is fully shown by Dr. Copeland’s drawings of Jupiter published in the ‘Monthly Notices’ for March 1874. It appears to me, however, that the advantage in going from the 3-foot to the 6-foot is not so great in the case of planets as in the case of nebulæ; yet, as to the Moon, the detail revealed by the 6-foot on a first-class night is simply astounding. The large telescope is a Newtonian mounted on a universal joint. For the outlying portions of the great drawing of the Orion nebula it was used as a Herschelian. As to powers profitably to be used, I find no advantage in going beyond 600; yet formerly on short occasions (not longer than perhaps 1 hour a night) very much higher powers (over 1000) have been successfully employed by my predecessors.”

Mr. Lassell’s 4-foot reflector was taken to Malta, and while there its owner, assisted by Mr. Marth, discovered a large number of nebulæ with it, but it appears to have done nothing else. His 2-foot reflector, which he had employed in previous years, seems to have been his most effective instrument; for with this he discovered Ariel and Umbriel, the two inner satellites of Uranus, Hyperion, the faintest satellite of Saturn, and the only known satellite of Neptune. He also was one of the first to distinguish the crape ring of Saturn. Mr. Lassell had many years of experience in the use of large reflectors; and in 1871 he wrote:—“There are formidable and, I fear, insurmountable difficulties attending the construction of telescopes of large size. … These are, primarily, the errors and disturbances of the atmosphere and the flexure of the object-glasses or specula. The visible errors of the atmosphere are, I believe, generally in proportion to the aperture of the telescope. … Up to the size [referring to an 8-in. O.-G.] in question, seasons of tranquil sky may be found when its errors are scarcely appreciable; but when we go much beyond this limit (say to 2 feet and upwards), both these difficulties become truly formidable. It is true that the defect of flexure may be in some degree eliminated, but that of atmospheric disturbance is quite unassailable. These circumstances will always make large telescopes proportionately less powerful than smaller ones; but notwithstanding these disadvantages they will, on some heavenly objects, reveal more than any small ones can.” Mr. Lassell’s last sentence refers to “delineations of the forms of the fainter nebulæ,” to “seeing the inner satellites of Uranus, the satellite of Neptune, and the seventh satellite of Saturn.” He mentions that, when at Malta, he “saw, in the 2-foot equatoreal, with a power of 1027, the two components of γ2 Andromedæ distinctly separated to the distance of a neat diameter of the smaller one. Now, no telescope of anything like 8-inches diameter could exhibit the star in this style.”

The large Cooke refractor of 24·8-inches aperture, which has been mounted for about twenty years at Gateshead, has a singularly barren record. Its atmospheric surroundings appear to have rendered it impotent. The owner of this fine and costly instrument wrote the author in 1885:—“Atmosphere has an immense deal to do with definition. I have only had one fine night since 1870! I then saw what I have never seen since.”

The Melbourne reflector of 4-feet aperture performed very indifferently for some years, and little work was accomplished with it. Latterly its performance has been more satisfactory; excellent photographs of the Moon have been taken, and it has been much employed in observations of nebulæ. The speculum having recently become tarnished, it has been dismounted for the purpose of being repolished.

The silver-on-glass reflector of 47·2-in. diameter, at the Paris Observatory, was used for some years by M. Wolf, who has also had the control of smaller telescopes. He was in a favourable position to judge of their relative effectiveness. In a lecture delivered at the Sardonne on March 6, 1886, he said:—“During the years I have observed with the great Parisian telescope I have found but one solitary night when the mirror was perfect.” Further on, he adds:—“I have observed a great deal with the two instruments [both reflectors] of 15·7 inches and 47·2 inches. I have rarely found any advantage in using the larger one when the object was sufficiently luminous.” M. Wolf also avers that a refractor of 15 inches or reflector of 15·7 inches will show everything in the heavens that can be discovered by instruments of very large aperture. He always found a telescope of 15·7-inch aperture surpass one of 7·9 inches, but expresses himself confidently that beyond about 15 inches increased aperture is no gain.

The Washington refractor of 25·8 inches effected a splendid success in Prof. Hall’s hands in 1877, when it revealed the two satellites of Mars. But immediately afterwards these minute bodies were shown in much smaller instruments; whence it became obvious that their original discovery was not entirely due to the grasp of the 25·8-inch telescope, but in a measure to the astuteness displayed by Prof. Hall in the search. A good observer had been associated with a good telescope; and an inviting research having been undertaken, it produced the natural result—an important success. The same instrument, in the same hands, enabled the rotation-period of Saturn to be accurately determined by means of a white spot visible in December 1876 on the disk of the planet, and which was subsequently seen by other observers with smaller glasses. Good work in other directions has also been accomplished at Washington, especially in observations of double stars and faint satellites. But notwithstanding these excellent performances, Prof. Hall expressed himself in rather disparaging terms of his appliances, saying “the large telescope does not show enough detail.” He gave a more favourable report in 1888; for we find it stated that “the objective retains its figure and polish well. By comparison with several other objectives which Prof. Hall has had an opportunity of seeing during recent years, he finds that the glass is an excellent one.”

Prof. Young, who has charge of the 23-inch refractor at Princeton, has also commented on the subject of the definition of large telescopes. He says:—“The greater susceptibility of large instruments to atmospheric disturbances is most sadly true; and yet, on the whole, I find also true what Mr. Clark told me would be the case on first mounting our 23-inch instrument, that I can almost always see with the 23-inch everything I see with the 9½-inch under the same atmospheric conditions, and see it better—if the seeing is bad only a little better, if good immensely better.” Prof. Young also mentioned that a power of 1200 on the 23-inch “worked perfectly on Jupiter on two different evenings in the spring of 1885 in bringing out fine details relating to the red spot and showing the true forms of certain white dots on the S. polar belt.”

The 26-inch refractor at the Leander McCormick Observatory, U. S. A., is successfully engaged in observations of nebulæ, and many new objects of this character have been found. It does not appear that the telescope is much used for other purposes; so that we can attach no significance to the fact that important discoveries have not been made with it in other departments.

The great Vienna refractor of 27-inches aperture “does not seem to accomplish quite what was expected of it,” according to Mr. Sawerthal, who recently visited the Observatory at Währing, Vienna. The Director, Dr. Weiss, states in his last report that “the 27-inch Grubb refractor has only been occasionally used, when the objects were too faint for the handier instruments.”

The still larger telescopes erected at the Observatories at Pulkowa and Nice have so recently come into employment that it would be premature to judge of their performance. In the Annual Report from Pulkowa (1887) it is stated that Dr. H. Struve was using the 30-inch refractor “in measuring those of Burnham’s double stars which are only seldom measurable with the ‘old 15-inch,’ together with other stars of which measures are scarce. He made 460 measures in eight or nine months, as well as 166 micro metric observations of the fainter satellites of Saturn and 15 of that of Neptune.” At Nice the 30-inch refractor was employed by M. Perrotin in physical observations of Mars in May and June 1888. The canal-shaped markings of Schiaparelli were confirmed, and some of them were traced “from the ocean of the southern hemisphere right across both continents and seas up to the north polar ice-cap.” The 30-inch also showed some remarkable changes in the markings; but these were not confirmed at other observatories. The telescope evidently revealed a considerable amount of detail on this planet; whence we may infer that its defining power is highly satisfactory.

The great Lick refractor, which appears to have been “first directed to the heavens from its permanent home on Mount Hamilton on the evening of January 3, 1888,” has been found ample work by the zealous astronomers who have it in charge. Prof. Holden, in speaking of it, says:—“It needs peculiar conditions, but when all the conditions are favourable its performance is superb.” Mr. Keeler, one of the observers, writes that, on January 7, 1888, when Saturn was examined, “he not only shone with the brilliancy due to the great size of the objective, but the minutest details of his surface were visible with wonderful distinctness. The outlines of the rings were very sharply defined with a power of 1000.” Mr. Keeler adds:—“According to my experience, there is a direct gain in power with increase of aperture. The 12-inch equatoreal brings to view objects entirely beyond the reach of the 6½-inch telescope, and details almost beyond perception with the 12-inch are visible at a glance with the 36-inch equatoreal. The great telescope is equal in defining power to the smaller ones.” This is no small praise, and it must have been extremely gratifying, not only to those who were immediately associated with the construction of the telescope, but to astronomers everywhere who were hoping to hear a satisfactory report. In its practical results this instrument has not yet, it is true, given us a discovery of any magnitude. It has disclosed several very small stars in the trapezium of the Orion nebula, some difficult double stars have been found and measured, and some interesting work has been done on the planets and nebulæ. Physical details have been observed in the ring nebula, between β and γ Lyræ, which no other telescope has ever reached before.

Mr. Common’s 5-foot reflector has been employed on several objects. In the spring of 1889 Uranus was frequently observed with it, and several minute points of light, suspected to be new satellites, were picked up. Evidence was obtained of a new satellite between Titania and Umbriel; but bad weather and haze, combined with the low altitude of Uranus, interfered with the complete success of the observations. “With only moderate powers, Uranus does not show a perfectly sharp disk. No markings are visible on it, and nothing like a ring has been seen round it.” Mr. Common, in a letter to the writer, dated November 9, 1889, says:—“The 5-foot has only been tried in an unfinished state as yet, the mirror not being quite finished when put into the tube last year. This was in order to gain experience and save the season. It performed much better than I had hoped, and is greatly superior to the 3-foot. I took some very fine photographs with it last year. It has been refigured, or rather completed, this summer, and has just been resilvered.” From this it is evident that Mr. Common’s large instrument has not yet been fully tested; but it clearly gives promise of successful results, and encourages the hope that it will exert an influence on the progress of astronomy. Owing to the highly reflective quality of silvered glass, the 5-foot speculum has a far greater command of light (space-penetrating power) than the great objective mounted at the Lick Observatory. Mr. Common’s mirror may therefore be expected to grasp nebulæ, stars, satellites, and comets which are of the last degree of faintness and quite invisible in the Lick refractor. But we must not forget that the latter instrument is certainly placed in a better atmosphere, and that its action is not therefore arrested in nearly the same degree by haze and undulations of the air. With equal conditions, the great reflector at Ealing would probably far surpass the large refractor we have referred to, the latter having less than one third of the light-grasping power of the former.

This rapid sketch of the performances of some of our finest telescopes must suffice for the present in assisting us to estimate their value as instruments of discovery. And it must be admitted that, on the whole, these appliances have been disappointing. The record of their successes is by no means an extended one, and in some individual cases absolute failure is unmistakable. We must judge of large glasses by their revelations; their capacity must be estimated by results. We often meet with glowing descriptions of colossal telescopes: their advantages are specified and their performances extolled to such a degree that expectation is raised to the highest pitch. But it is not always that such praise is justified by facts. The fruit of their employment is rarely prolific to the extent anticipated, because the observers have been defeated in their efforts by impediments which inseparably attend the use of such huge constructions.

Our atmosphere is always in a state of unrest. Its condition is subject to many variations. Heat, radiated or evolved from terrestrial objects, rises in waves and floats along with the wind. These vapours exercise a property of refraction, with the result that, as they pass in front of celestial objects, the latter at once become subject to a rapid series of contortions in detail. Their outlines appear tremulous, and all the features are involved in a rippling effect that seriously compromises the definition. Delicate markings are quite effaced on a disk which is thus in a state of ebullition; and on such occasions observers are rarely able to attain their ends. Telescopic work is, in fact, best deferred until a time when the air has become more tranquil. In large instruments these disturbances are very troublesome, as they increase proportionately with aperture. They are so pronounced and so persistent as to practically annul the advantage of considerable light-grasping power; for unless the images are fairly well defined, mere brightness counts for nothing. Reflectors are peculiarly susceptible to this obstacle; moreover, the open tube, the fact that rays from an object pass twice through its length, and that a certain amount of heat radiated from the observer must travel across the mouth of the tube all serve to impair the definition. A speculum, to act well, must be of coincident temperature in every part. This is not always the case, owing to the variableness of the weather or to unequal exposure of the speculum. Large refractors, though decidedly less liable to atmospheric influences, are yet so much at the mercy of them that one of the first and most important things discussed in regard to a new instrument is that of a desirable site for it.

The great weight of large objectives and specula tends to endanger the perfect consistency and durableness of their figure, and imposes a severe strain upon their cellular mounting. The glasses must obviously assume a variety of bearings during active employment. This introduces a possible cause of defective performance; for in some instances definition has been found unequal, according to the position of the glass. Specula are very likely to be affected in this manner, as they are loosely deposited in their cells to allow of expansion, and the adjustment is easily deranged. The slightest flaw in the mounting of objectives immediately makes itself apparent in faulty images. Special precautions are of course taken to prevent flexure and other errors of the kind alluded to, and modern adaptations may be said to have nearly eliminated them; but there is always a little outstanding danger, from the ease with which glasses may be distorted or their adjustment become unsettled.

Another difficulty formerly urged against telescopes of great size was the trouble of managing them; but this objection can scarcely be applied to the fine instruments of the present day, which are so contrived as to be nearly as tractable as small ones. A century ago, glass of the requisite purity for large objectives could not be obtained; but this difficulty appears also to have quite disappeared. And the process of figuring lenses of considerable diameter is now effected with the same confidence and success as that of greatly inferior sizes.

Let us now turn for a moment to the consideration of small instruments, premising that in this category are included all those up to about 12-inches aperture. Modern advances have quite altered our ideas as to what may be regarded as large and small telescopes. Sixty-five years ago the Dorpat refractor, with a 9½-inch objective by Fraunhofer, was considered a prodigy of its class; now it occupies a very minor place relatively to the 30-inch and 36-inch objectives at Nice, Pulkowa, and Mount Hamilton.

Prof. Hall remarked, in 1885:—“There is too much scepticism on the part of those who are observing with large instruments in regard to what can be seen with small ones.” This is undoubtedly true; but a mere prejudice or opinion of this sort cannot affect the question we are discussing, as it is one essentially relying upon facts.

Small instruments have done a vast amount of useful work in every field of astronomical observation. Even in the realm of nebulæ, which, more than any other, requires great penetrating power, D’Arrest showed what could be effected with small aperture. Burnham, with only a 6-inch refractor, has equally distinguished himself in another branch; for he has discovered more double stars than any previous observer. Dawes was one of the most successful amateurs of his day, though his instrumental means never exceeded an 8-inch glass. But we need not particularize further. It will be best to get a general result from the collective evidence of past years. We find that nearly all the comets, planetoids, double stars, &c. owe their first detection to comparatively small instruments. Our knowledge of sun-spots, lunar and planetary features is also very largely derived from similar sources. There is no department but what is indebted more or less to the services of small telescopes: the good work they have done is due to their excellent defining powers and to the facility with which they may be used.

Fig. 11.


Refracting-Telescope, by Browning.

We have already said that the record of discoveries made with really large instruments is limited; but it should also be remarked that until quite recently the number of such instruments has been very small. And not always, perhaps, have the best men had the control of them. Virtually the observer himself constitutes the most important part of his telescope: it is useless having a glass of great capacity at one end of a tube, and a man of small capacity at the other. Two different observers essentially alter the character of an instrument, according to their individual skill in utilizing its powers.

Large telescopes are invariably constructed for the special purpose of discovering unknown orbs and gleaning new facts from the firmament. But in attempting to carry out this design, obstacles of a grave nature confront the observer. The comparatively tranquil and sharply definite images seen in small instruments disappear, and in their places forms are presented much more brilliant and expansive, it is true, but involved in glare and subject to constant agitation, which serve to obliterate most of the details. The observer becomes conscious that what he has gained in light has been lost in definition. At times—perhaps on one occasion in fifty—this experience is different; the atmosphere has apparently assumed a state of quiescence, and objects are seen in a great telescope with the same clearness of detail as in smaller ones. It is then the observer fully realizes that his instrument, though generally ineffective, is not itself in fault, and that it would do valuable work were the normal condition of the air suitable to the exercise of its capacity.

Those who have effected discoveries with large instruments have done so in spite of the impediment alluded to. Relying mainly upon great illuminating power, bad or indifferent definition has been tolerated; and they have succeeded in detecting minute satellites, faint nebulæ, clusters, and small companions to double stars. Telescopes of great aperture are at home in this kind of work. But when we come to consider discoveries on the surfaces of the Sun, Moon, and planets, the case is entirely different; the diligent use of small appliances appears to have left little for the larger constructions to do. There are some thousands of drawings of the objects named, made by observers employing telescopes from 3 up to 72 inches in diameter; and a careful inspection shows that the smaller instruments have not been outdone in this interesting field of observation. In point of fact they rather appear to have had the advantage, and the reason of this is perhaps sufficiently palpable. The details on a bright planetary object are apt to become obliterated in the glare of a large instrument. Even with a small telescope objects like Venus and Jupiter are best seen at about the time of sunset, and before their excessive brilliancy on the dark sky is enabled to act prejudicially in effacing the delicate markings. Probably this is one of the causes which, in combination with the undulations of the atmosphere, have restricted the discoveries of large instruments chiefly to faint satellites, stars, and nebulæ.

Prof. Young ascribes many of the successes of small instruments to exceptional cuteness of vision on the part of certain observers, and to the fact that such instruments are so very numerous and so diligently used that it is fair to conclude they must reap the main harvest of discoveries. We must remember that for every observer working with an aperture of 18 inches and more, there are more than a hundred employing objectives or specula of from 5 to 12 inches; hence we may expect some notable instances of keen sight amongst the latter. The success of men like Dawes and others, who outstrip their contemporaries, and with small glasses achieve phenomenal results, is to be ascribed partly to good vision and partly to that natural aptitude and pertinacity uniformly characteristic of the best observers. These circumstances go far to explain the unproductiveness of large telescopes: in the race for distinction they are often distanced by their more numerous and agile competitors.

The objections which applied to the large reflecting instruments of Herschel, Lassell, and Rosse scarcely operate with the same force in regard to the great refractors of the present day, and for these reasons:—Refractors are somewhat less sensitive to atmospheric disturbances than reflectors. The modern instruments are mounted in much improved style, and placed in localities selected for their reception. In fact, all that the optician’s art can do to perfect such appliances has been done, and Nature herself has been consulted as to essentials; for we find the most powerful refractor of all erected on the summit of Mount Hamilton, where the skies are clear and Urania ever smiles invitingly.

Some observers who have obtained experience both with large and small telescopes aver that, even on a bright planet, they can see more, and often see it much better, with the larger glasses. But we rarely, if ever, find them saying they can discern anything which is absolutely beyond the reach of small instruments. It would be much more satisfactory evidence of the super-excellence of the former if definite features could be detected which are quite beyond the reach of telescopes of inferior size; but we seldom meet with experiences of this kind, and the inference is obvious.

There is undoubtedly a certain aperture which combines in itself sufficient light-grasping power with excellent definition. It takes a position midway between great illuminating power and bad definition on the one hand, and feeble illuminating power and sharp definition on the other. Such an aperture must form the best working instrument in an average situation upon ordinary nights and ordinary objects. M. Wolf fixes this aperture at about 15 inches, and he is probably near the truth.

The quaint Dr. Kitchener, who, early in the present century, made a number of trials with fifty-one telescopes, entertained a very poor opinion of big instruments. In his book on ‘Telescopes,’ he says:—“Immense telescopes are only about as useful as the enormous spectacles suspended over the doors of opticians.” … “Astronomical amateurs should rather seek for perfect instruments than large ones. What good can a great deal of bad light do?”

We shall be in a better position a few years hence to estimate the value of great telescopes; for the principal instruments of this class have only been completed a short time. Judging from the statements of some of the observers, who are men of the utmost probity and ability, certain of the large instruments are capable of work far in advance of anything hitherto done. Definition, they say, is excellent, notwithstanding the great increase of aperture. The old stumbling-block appears, therefore, to have been removed, and astronomy is to be congratulated on the acquirement of such vastly improved implements of research. Even should the large telescopes continue to prove disappointing in certain branches, they may certainly be expected to maintain their advantage in others. They will always be valuable as a corrective to smaller and handier instruments. For special lines of work in which very small or very faint objects are concerned, considerable light-grasping power is absolutely required; and it is chiefly in these departments that large instruments may be further expected to augment our knowledge. In photographic and spectroscopic work they also have a special value, which late researches have brought prominently to the fore.

The telescopes of the future will probably surpass in dimensions those of our own day. The University of Los Angelos, in California, propose to erect a 42-inch refractor on the summit of Wilson’s Peak of the Sierra Madre mountains, which is 6000 feet high and about 25 miles from Los Angelos. In reference to this contemplated extension of size, it may be opportune to mention that large objectives do not transmit light proportionately with their increased diameter, owing to greater thickness of the lenses, which increases the absorption. The Washington objective of 25·8-inch aperture is 2·87 inches in thickness, and more than half the light which falls upon it is lost by absorption. On the other hand, specula, with every enlargement of aperture, give proportionately more light-grasping power, and their diameters might be greatly increased but for the mechanical obstacles in the way of their construction. Mr. Ranyard expresses the opinion that “with the refractor we are fast approaching the practical limit of size.” After referring to the Washington object-glass as above, he says:—“If we double the thickness, more than three quarters of the light would be absorbed and less than one quarter would be transmitted. The greatest loss of light is only for the centre of the object-glass; but in all parts the absorption is quadrupled for a lens of double aperture.” If, therefore, future years see any great development in the sizes of telescopes, it will probably be in connection with reflectors; for the loss of light by absorption in the thick lenses of large refractors must ultimately determine their limits. Mr. Calver says:—“The light of reflectors exceeding 18 inches in diameter is certainly greater than that of refractors of equal size, and for anything like 3 feet very much greater.” He nearly obtained the order for a monster reflector for the Lick Observatory, the Americans admitting that the reflector must be the instrument of the future for power and light because there were practically no limits to its size. But the reflector has not been much used in America, and therefore is little known. For this reason the authorities decided to erect a large refractor, and they appear to have been justified in their selection, for the 36-inch objective has proved excellent.

Telescopic Work for Starlight Evenings

Подняться наверх