Читать книгу Transporters and Drug-Metabolizing Enzymes in Drug Toxicity - Albert P. Li - Страница 99
References
Оглавление1 1 Honig S, Murray KA. Postsurgical pain: zomepirac sodium, propoxyphene/‐acetaminophen combination, and placebo. J Clin Pharmacol 1981; 21 (10):443–8.
2 2 Pircio AW, Buyniski JP, Roebel LE. Pharmacological effects of a combination of butorphanol and acetaminophen. Arch Int Pharmacodyn Ther 1978; 235(1):116–23.
3 3 Hopkinson JH, 3rd, Blatt G, Cooper M, Levin HM, Berry FN, Cohn H. Effective pain relief: comparative results with acetaminophen in a new dose formulation, propoxyphene napsylate‐acetaminophen combination, and placebo. Curr Ther Res Clin Exp 1976; 19(6):622–30.
4 4 Diamond S. Treatment of migraine with isometheptene, acetaminophen, and dichloralphenazone combination: a double‐blind, crossover trial. Headache 1976; 15(4):282–7.
5 5 Walker JM. Value of an acetaminophen‐chlorzoxazone combination (parafon forte) in the treatment of acute musculoskeletal disorders. Curr Ther Res Clin Exp 1973; 15(5):248–52.
6 6 Steele RW, Young FS, Bass JW, Shirkey HC. Oral antipyretic therapy. Evaluation of aspirin‐acetaminophen combination. Am J Dis Child 1972; 123(3):204–6.
7 7 Cameron JS, Specht PG, Wendt GR. Effects of placebo and an acetaminophen‐salicylamide combination on moods, emotions, and motivations. J Psychol 1967; 67(2):257–62.
8 8 Lee WM. The case for limiting acetaminophen‐related deaths: smaller doses and unbundling the opioid‐acetaminophen compounds. Clin Pharmacol Ther 2010; 88(3):289–92.
9 9 Robinson AE, Sattar H, McDowall RD, Holder AT, Powell R. Forensic toxicology of some deaths associated with the combined use of propoxyphene and acetaminophen (paracetamol). J Forensic Sci 1977; 22(4):708–17.
10 10 Amar PJ, Schiff ER. Acetaminophen safety and hepatotoxicity‐‐where do we go from here? Expert Opin Drug Saf 2007; 6(4):341–55.
11 11 Bailey BO. Acetaminophen hepatotoxicity and overdose. Am Fam Physician 1980; 22(1):83–7.
12 12 Fercovic A, Serra I, Serra L. Acetaminophen hepatotoxicity in an alcohol addicted student. Case report. Rev Med Chil 1999; 127(2):202–5.
13 13 Himmelstein DU, Woolhandler SJ, Adler RD. Elevated SGOT/SGPT ratio in alcoholic patients with acetaminophen hepatotoxicity. Am J Gastroenterol 1984; 79(9):718–20.
14 14 Johnson MW, Friedman PA, Mitch WE. Alcoholism, nonprescription drug and hepatotoxicity. The risk from unknown acetaminophen ingestion. Am J Gastroenterol 1981; 76(6):530–3.
15 15 Johnston SC, Pelletier LL, Jr. Enhanced hepatotoxicity of acetaminophen in the alcoholic patient. Two case reports and a review of the literature. Medicine (Baltimore). 1997; 76(3):185–91.
16 16 McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL. Potentiation of acetaminophen hepatotoxicity by alcohol. JAMA 1980; 244(3):251–3.
17 17 Poulsen HE, Lerche A, Pedersen NT. Potentiated hepatotoxicity from concurrent administration of acetaminophen and allyl alcohol to rats. Biochem Pharmacol 1985; 34(6):727–31.
18 18 Schmidt LE, Dalhoff K, Poulsen HE. Acute versus chronic alcohol consumption in acetaminophen‐induced hepatotoxicity. Hepatology 2002; 35(4):876–82.
19 19 Wootton FT, Lee WM. Acetaminophen hepatotoxicity in the alcoholic. South Med J 1990; 83(9):1047–9.
20 20 Zimmerman HJ, Maddrey WC. Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure. Hepatology 1995; 22(3):767–73.
21 21 Chomchai S, Chomchai C, Anusornsuwan T. Acetaminophen psi parameter: a useful tool to quantify hepatotoxicity risk in acute acetaminophen overdose. Clin Toxicol (Phila) 2011; 49(7):664–7.
22 22 Chomchai S, Lawattanatrakul N, Chomchai C. Acetaminophen Psi Nomogram: a sensitive and specific clinical tool to predict hepatotoxicity secondary to acute acetaminophen overdose. J Med Assoc Thai 2014; 97(2):165–72.
23 23 Roth RA, Ganey PE. Intrinsic versus idiosyncratic drug‐induced hepatotoxicity‐‐two villains or one? J Pharmacol Exp Ther 2010; 332(3):692–7.
24 24 Proctor WR, Chakraborty M, Fullerton AM, Korrapati MC, Ryan PM, Semple K, et al. Thymic stromal lymphopoietin and interleukin‐4 mediate the pathogenesis of halothane‐induced liver injury in mice. Hepatology 2014; 60(5):1741–52.
25 25 Laine JE, Auriola S, Pasanen M, Juvonen RO. Acetaminophen bioactivation by human cytochrome P450 enzymes and animal microsomes. Xenobiotica 2009; 39(1):11–21.
26 26 Takahashi T, Lasker JM, Rosman AS, Lieber CS. Induction of cytochrome P‐4502E1 in the human liver by ethanol is caused by a corresponding increase in encoding messenger RNA. Hepatology 1993; 17(2):236–45.
27 27 Badger TM, Ronis MJ, Ingelman‐Sundberg M, Hakkak R. Pulsatile blood alcohol and CYP2E1 induction during chronic alcohol infusions in rats. Alcohol 1993; 10(6):453–7.
28 28 Ueshima Y, Tsutsumi M, Takase S, Matsuda Y, Kawahara H. Acetaminophen metabolism in patients with different cytochrome P‐4502E1 genotypes. Alcohol Clin Exp Res 1996; 20 (1 Suppl):25A–8A.
29 29 Thummel KE, Slattery JT, Ro H, Chien JY, Nelson SD, Lown KE, et al. Ethanol and production of the hepatotoxic metabolite of acetaminophen in healthy adults. Clin Pharmacol Ther 2000; 67(6):591–9.
30 30 Moss M, Guidot DM, Wong‐Lambertina M, Ten Hoor T, Perez RL, Brown LA. The effects of chronic alcohol abuse on pulmonary glutathione homeostasis. Am J Respir Crit Care Med 2000; 161 (2 Pt 1):414–9.
31 31 Kostrubsky VE, Szakacs JG, Jeffery EH, Wood SG, Bement WJ, Wrighton SA, et al. Role of CYP3A in ethanol‐mediated increases in acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 1997; 143(2):315–23.
32 32 Liang Y, Yeligar SM, Brown LA. Chronic‐alcohol‐abuse‐induced oxidative stress in the development of acute respiratory distress syndrome. Sci World J 2012; 2012:740308.
33 33 Koenderink JB, van den Heuvel J, Bilos A, Vredenburg G, Vermeulen NPE, Russel FGM. Human multidrug resistance protein 4 (MRP4) is a cellular efflux transporter for paracetamol glutathione and cysteine conjugates. Arch Toxicol 2020, 94, 3027–3032.
34 34 Barnes SN, Aleksunes LM, Augustine L, Scheffer GL, Goedken MJ, Jakowski AB, et al. Induction of hepatobiliary efflux transporters in acetaminophen‐induced acute liver failure cases. Drug Metab Dispos 2007; 35 (10):1963–9.
35 35 Ghanem CI, Gomez PC, Arana MC, Perassolo M, Ruiz ML, Villanueva SS, et al. Effect of acetaminophen on expression and activity of rat liver multidrug resistance‐associated protein 2 and P‐glycoprotein. Biochem Pharmacol 2004; 68(4):791–8.
36 36 Lima RA, Candido EB, de Melo FP, Piedade JB, Vidigal PV, Silva LM, et al. Gene expression profile of ABC transporters and cytotoxic effect of ibuprofen and acetaminophen in an epithelial ovarian cancer cell line in vitro. Rev Bras Ginecol Obstet 2015; 37(6):283–90.
37 37 Campion SN, Johnson R, Aleksunes LM, Goedken MJ, van Rooijen N, Scheffer GL, et al. Hepatic Mrp4 induction following acetaminophen exposure is dependent on Kupffer cell function. Am J Physiol Gastrointest Liver Physiol 2008; 295(2):G294–304.
38 38 Kwan D, Bartle WR, Walker SE. Abnormal serum transaminases following therapeutic doses of acetaminophen in the absence of known risk factors. Dig Dis Sci 1995; 40(9):1951–5.
39 39 Sarich T, Kalhorn T, Magee S, al‐Sayegh F, Adams S, Slattery J, et al. The effect of omeprazole pretreatment on acetaminophen metabolism in rapid and slow metabolizers of S‐mephenytoin. Clin Pharmacol Ther 1997; 62(1):21–8.
40 40 Cook MD, Williams SR, Clark RF. Phenytoin‐potentiated hepatotoxicity following acetaminophen overdose? A closer look. Dig Dis Sci 2007; 52(1):208–9.
41 41 Suchin SM, Wolf DC, Lee Y, Ramaswamy G, Sheiner PA, Facciuto M, et al. Potentiation of acetaminophen hepatotoxicity by phenytoin, leading to liver transplantation. Dig Dis Sci 2005; 50 (10):1836–8.
42 42 Maddox JF, Amuzie CJ, Li M, Newport SW, Sparkenbaugh E, Cuff CF, et al. Bacterial‐ and viral‐induced inflammation increases sensitivity to acetaminophen hepatotoxicity. J Toxicol Environ Health A 2010; 73(1):58–73.
43 43 Tukov FF, Maddox JF, Amacher DE, Bobrowski WF, Roth RA, Ganey PE. Modeling inflammation‐drug interactions in vitro: a rat Kupffer cell‐hepatocyte coculture system. Toxicol in vitro 2006; 20(8):1488–99.
44 44 Chomchai S, Chomchai C. Being overweight or obese as a risk factor for acute liver injury secondary to acute acetaminophen overdose. Pharmacoepidemiol Drug Saf 2018; 27(1):19–24.
45 45 Makin A, Williams R. Paracetamol hepatotoxicity and alcohol consumption in deliberate and accidental overdose. QJM 2000; 93(6):341–9.
46 46 Banda PW, Quart BD. The effect of mild alcohol consumption on the metabolism of acetaminophen in man. Res Commun Chem Pathol Pharmacol 1982; 38(1):57–70.
47 47 Farinati F, Cardin R, de Maria N, Lecis PE, Della Libera G, Burra P, et al. Zinc, iron, and peroxidation in liver tissue. Cumulative effects of alcohol consumption and virus‐mediated damage‐‐a preliminary report. Biol Trace Elem Res 1995; 47 (1–3):193–9.
48 48 Ozdemir O, Boran M, Gokce V, Uzun Y, Kocak B, Korkmaz S. A case with severe rhabdomyolysis and renal failure associated with cerivastatin‐gemfibrozil combination therapy‐‐a case report. Angiology 2000; 51(8):695–7.
49 49 Ravnan SL, Locke C, Yee WP, Haase K. Cerivastatin‐induced rhabdomyolysis: 11 case reports. Pharmacotherapy 2002; 22(4):533–7.
50 50 Rodriguez ML, Mora C, Navarro JF. Cerivastatin‐induced rhabdomyolysis. Ann Intern Med 2000; 132(7):598.
51 51 Simpson S. Case reports of rhabdomyolysis associated with cerivastatin therapy. Arch Intern Med 2001; 161 (21):2630–1.
52 52 SoRelle R. Baycol withdrawn from market. Circulation 2001; 104(8):E9015–6.
53 53 Wooltorton E. Bayer pulls cerivastatin (Baycol) from market. CMAJ 2001; 165(5):632.
54 54 Shek A, Ferrill MJ. Statin‐fibrate combination therapy. Ann Pharmacother 2001; 35 (7–8):908–17.
55 55 Kaspera R, Naraharisetti SB, Tamraz B, Sahele T, Cheesman MJ, Kwok PY, et al. Cerivastatin in vitro metabolism by CYP2C8 variants found in patients experiencing rhabdomyolysis. Pharmacogenet Genomics 2010; 20 (10):619–29.
56 56 Muck W. Clinical pharmacokinetics of cerivastatin. Clin Pharmacokinet 2000; 39(2):99–116.
57 57 Wang JS, Neuvonen M, Wen X, Backman JT, Neuvonen PJ. Gemfibrozil inhibits CYP2C8‐mediated cerivastatin metabolism in human liver microsomes. Drug Metab Dispos 2002; 30 (12):1352–6.
58 58 Shitara Y, Hirano M, Sato H, Sugiyama Y. Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)‐mediated hepatic uptake and CYP2C8‐mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug‐drug interaction between cerivastatin and gemfibrozil. J Pharmacol Exp Ther 2004; 311(1):228–36.
59 59 Backman JT, Kyrklund C, Neuvonen M, Neuvonen PJ. Gemfibrozil greatly increases plasma concentrations of cerivastatin. Clin Pharmacol Ther 2002; 72(6):685–91.
60 60 Muck W. Rational assessment of the interaction profile of cerivastatin supports its low propensity for drug interactions. Drugs 1998; 56 Suppl 1:15–23; discussion 33.
61 61 Marciante KD, Durda JP, Heckbert SR, Lumley T, Rice K, McKnight B, et al. Cerivastatin, genetic variants, and the risk of rhabdomyolysis. Pharmacogenet Genomics 2011; 21(5):280–8.
62 62 Lucas RA, Weathersby BB, Rocco VK, Pepper JM, Butler KL. Rhabdomyolysis associated with cerivastatin: six cases within 3 months at one hospital. Pharmacotherapy 2002; 22(6):771–4.
63 63 Shitara Y, Itoh T, Sato H, Li AP, Sugiyama Y. Inhibition of transporter‐mediated hepatic uptake as a mechanism for drug‐drug interaction between cerivastatin and cyclosporin A. J Pharmacol Exp Ther 2003; 304(2):610–6.
64 64 Yao Y, Toshimoto K, Kim SJ, Yoshikado T, Sugiyama Y. Quantitative analysis of complex drug‐drug interactions between cerivastatin and metabolism/transport inhibitors using physiologically based pharmacokinetic modeling. Drug Metab Dispos 2018; 46(7):924–33.
65 65 Varma MV, Lin J, Bi YA, Kimoto E, Rodrigues AD. Quantitative rationalization of gemfibrozil drug interactions: consideration of transporters‐enzyme interplay and the role of circulating metabolite gemfibrozil 1‐O‐beta‐glucuronide. Drug Metab Dispos 2015; 43(7):1108–18.
66 66 Burdette DE, Sackellares JC. Felbamate pharmacology and use in epilepsy. Clin Neuropharmacol 1994; 17(5):389–402.
67 67 Zupanc ML, Roell Werner R, Schwabe MS, O'Connor SE, Marcuccilli CJ, Hecox KE, et al. Efficacy of felbamate in the treatment of intractable pediatric epilepsy. Pediatr Neurol 2010; 42(6):396–403.
68 68 Heyman E, Levin N, Lahat E, Epstein O, Gandelman‐Marton R. Efficacy and safety of felbamate in children with refractory epilepsy. Eur J Paediatr Neurol 2014; 18(6):658–62.
69 69 Thakkar K, Billa G, Rane J, Chudasama H, Goswami S, Shah R. The rise and fall of felbamate as a treatment for partial epilepsy‐‐aplastic anemia and hepatic failure to blame? Expert Rev Neurother 2015; 15 (12):1373–5.
70 70 Dieckhaus CM, Thompson CD, Roller SG, Macdonald TL. Mechanisms of idiosyncratic drug reactions: the case of felbamate. Chem Biol Interact 2002; 142 (1–2):99–117.
71 71 Pellock JM, Brodie MJ. Felbamate: 1997 update. Epilepsia 1997; 38 (12):1261–4.
72 72 Pennell PB, Ogaily MS, Macdonald RL. Aplastic anemia in a patient receiving felbamate for complex partial seizures. Neurology 1995; 45 (3 Pt 1):456–60.
73 73 Shah YD, Singh K, Friedman D, Devinsky O, Kothare SV. Evaluating the safety and efficacy of felbamate in the context of a black box warning: a single center experience. Epilepsy Behav 2016; 56:50–3.
74 74 Egnell AC, Houston B, Boyer S. in vivo CYP3A4 heteroactivation is a possible mechanism for the drug interaction between felbamate and carbamazepine. J Pharmacol Exp Ther 2003; 305(3):1251–62.
75 75 Glue P, Banfield CR, Perhach JL, Mather GG, Racha JK, Levy RH. Pharmacokinetic interactions with felbamate. in vitro–in vivo correlation. Clin Pharmacokinet 1997; 33(3):214–24.
76 76 Kapetanovic IM, Torchin CD, Strong JM, Yonekawa WD, Lu C, Li AP, et al. Reactivity of atropaldehyde, a felbamate metabolite in human liver tissue in vitro. Chem Biol Interact 2002; 142 (1–2):119–34.
77 77 Kapetanovic IM, Torchin CD, Thompson CD, Miller TA, McNeilly PJ, Macdonald TL, et al. Potentially reactive cyclic carbamate metabolite of the antiepileptic drug felbamate produced by human liver tissue in vitro. Drug Metab Dispos 1998; 26 (11):1089–95.
78 78 Popovic M, Nierkens S, Pieters R, Uetrecht J. Investigating the role of 2‐phenylpropenal in felbamate‐induced idiosyncratic drug reactions. Chem Res Toxicol 2004; 17 (12):1568–76.
79 79 Roller SG, Dieckhaus CM, Santos WL, Sofia RD, Macdonald TL. Interaction between human serum albumin and the felbamate metabolites 4‐Hydroxy‐5‐phenyl‐[1,3]oxazinan‐2‐one and 2‐phenylpropenal. Chem Res Toxicol 2002; 15(6):815–24.
80 80 Thompson CD, Kinter MT, Macdonald TL. Synthesis and in vitro reactivity of 3‐carbamoyl‐2‐phenylpropionaldehyde and 2‐phenylpropenal: putative reactive metabolites of felbamate. Chem Res Toxicol 1996; 9(8):1225–9.
81 81 Leone AM, Kao LM, McMillian MK, Nie AY, Parker JB, Kelley MF, et al. Evaluation of felbamate and other antiepileptic drug toxicity potential based on hepatic protein covalent binding and gene expression. Chem Res Toxicol 2007; 20(4):600–8.
82 82 Potschka H, Fedrowitz M, Loscher W. P‐Glycoprotein‐mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood‐brain barrier: evidence from microdialysis experiments in rats. Neurosci Lett 2002; 327(3):173–6.
83 83 Potschka H, Fedrowitz M, Loscher W. Brain access and anticonvulsant efficacy of carbamazepine, lamotrigine, and felbamate in ABCC2/MRP2‐deficient TR‐ rats. Epilepsia 2003; 44 (12):1479–86.
84 84 Amery KV. Clinical evaluation of the effects of flucloxacillin in skin and soft tissue infections in the Ivory Coast. Pharmatherapeutica 1988; 5(3):193–7.
85 85 Harding JW, Knudsen ET. General practitioners' forum. Flucloxacillin in the treatment of skin and soft‐tissue infections. Practitioner 1970; 205 (230):801–6.
86 86 Lacey RW, Lewis EL. Further evolution of a strain of Staphylococcus aureus in vivo: evidence for significant inactivation of flucloxacillin by penicillinase. J Med Microbiol 1975; 8(2):337–47.
87 87 Brogi G. Experience in pediatrics with a combination of ampicillin and flucloxacillin drops. Minerva Pediatr 1979; 31 (10):813–8.
88 88 Chew R, Woods ML. Flucloxacillin does not achieve therapeutic cerebrospinal fluid levels against meticillin‐sensitive Staphylococcus aureus in adults: a case report and review of the literature. Int J Antimicrob Agents 2016; 47(3):229–31.
89 89 Ritchie SR, Rupali P, Roberts SA, Thomas MG. Flucloxacillin treatment of Staphylococcus aureus meningitis. Eur J Clin Microbiol Infect Dis 2007; 26(7):501–4.
90 90 Moghissi K, Lutley C, Green J, Moghissi AJ. A trial comparing the use of penicillin and streptomycin, and flucloxacillin and ampicillin prophylactically in patients undergoing major thoracic surgery. Br J Clin Pract 1981; 35 (7–8):250–3.
91 91 Wilson AP, Gruneberg RN, Treasure T, Sturridge MF. A clinical trial of teicoplanin compared with a combination of flucloxacillin and tobramycin as antibiotic prophylaxis for cardiac surgery: the use of a scoring method to assess the incidence of wound infection. J Hosp Infect. 1986; 7 Suppl A:105–12.
92 92 Holm S, Larsson SE. The penetration of flucloxacillin into cortical and cancellous bone during arthroplasty of the knee. Int Orthop 1982; 6(4):243–7.
93 93 Koek GH, Stricker BH, Blok AP, Schalm SW, Desmet VJ. Flucloxacillin‐associated hepatic injury. Liver 1994; 14(5):225–9.
94 94 Turner IB, Eckstein RP, Riley JW, Lunzer MR. Prolonged hepatic cholestasis after flucloxacillin therapy. Med J Aust 1989; 151 (11–12):701–5.
95 95 Teixeira M, Macedo S, Batista T, Martins S, Correia A, Matos LC. Flucloxacillin‐induced hepatotoxicity‐association with HLA‐B*5701. Rev Assoc Med Bras (1992). 2020; 66(1):12–7.
96 96 Nicoletti P, Aithal GP, Chamberlain TC, Coulthard S, Alshabeeb M, Grove JI, et al. Drug‐induced liver injury due to flucloxacillin: relevance of multiple human leukocyte antigen alleles. Clin Pharmacol Ther 2019; 106(1):245–53.
97 97 Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe'er I, Floratos A, et al. HLA‐B*5701 genotype is a major determinant of drug‐induced liver injury due to flucloxacillin. Nat Genet 2009; 41(7):816–9.
98 98 Gath J, Charles B, Sampson J, Smithurst B. Pharmacokinetics and bioavailability of flucloxacillin in elderly hospitalized patients. J Clin Pharmacol 1995; 35(1):31–6.
99 99 Thijssen HH, Wolters J. The metabolic disposition of flucloxacillin in patients with impaired kidney function. Eur J Clin Pharmacol 1982; 22(5):429–34.
100 100 Dekker SJ, Dohmen F, Vermeulen NPE, Commandeur JNM. Characterization of kinetics of human cytochrome P450s involved in bioactivation of flucloxacillin: inhibition of CYP3A‐catalysed hydroxylation by sulfaphenazole. Br J Pharmacol. 2019; 176(3):466–77.
101 101 Lakehal F, Dansette PM, Becquemont L, Lasnier E, Delelo R, Balladur P, et al. Indirect cytotoxicity of flucloxacillin toward human biliary epithelium via metabolite formation in hepatocytes. Chem Res Toxicol 2001; 14(6):694–701.
102 102 Huwyler J, Wright MB, Gutmann H, Drewe J. Induction of cytochrome P450 3A4 and P‐glycoprotein by the isoxazolyl‐penicillin antibiotic flucloxacillin. Curr Drug Metab 2006; 7(2):119–26.
103 103 Jenkins RE, Meng X, Elliott VL, Kitteringham NR, Pirmohamed M, Park BK. Characterisation of flucloxacillin and 5‐hydroxymethyl flucloxacillin haptenated HSA in vitro and in vivo. Proteomics Clin Appl 2009; 3(6):720–9.
104 104 Waddington JC, Ali SE, Penman SL, Whitaker P, Hamlett J, Chadwick A, et al. Cell membrane transporters facilitate the accumulation of hepatocellular flucloxacillin protein adducts: implication in flucloxacillin‐induced liver injury. Chem Res Toxicol 2020, 33(12):2939–2943.
105 105 Cyr M, Brown CS. Nefazodone: its place among antidepressants. Ann Pharmacother 1996; 30(9):1006–12.
106 106 DeVane CL, Grothe DR, Smith SL. Pharmacology of antidepressants: focus on nefazodone. J Clin Psychiatry 2002; 63 Suppl 1:10–7.
107 107 Eison AS, Eison MS, Torrente JR, Wright RN, Yocca FD. Nefazodone: preclinical pharmacology of a new antidepressant. Psychopharmacol Bull 1990; 26(3):311–5.
108 108 Ellingrod VL, Perry PJ. Nefazodone: a new antidepressant. Am J Health Syst Pharm 1995; 52 (24):2799–812.
109 109 Goldberg RJ. Nefazodone: a novel antidepressant. Psychiatr Serv 1995; 46 (11):1113–4.
110 110 Aranda‐Michel J, Koehler A, Bejarano PA, Poulos JE, Luxon BA, Khan CM, et al. Nefazodone‐induced liver failure: report of three cases. Ann Intern Med 1999; 130 (4 Pt 1):285–8.
111 111 Conway CR, McGuire JM, Baram VY. Nefazodone‐induced liver failure. J Clin Psychopharmacol 2004; 24(3):353–4.
112 112 Eloubeidi MA, Gaede JT, Swaim MW. Reversible nefazodone‐induced liver failure. Dig Dis Sci 2000; 45(5):1036–8.
113 113 Lucena MI, Andrade RJ, Gomez‐Outes A, Rubio M, Cabello MR. Acute liver failure after treatment with nefazodone. Dig Dis Sci 1999; 44 (12):2577–9.
114 114 Schirren CA, Baretton G. Nefazodone‐induced acute liver failure. Am J Gastroenterol 2000; 95(6):1596–7.
115 115van Battum PL, van de Vrie W, Metselaar HJ, Verstappen VM, Zondervan PE, de Man RA. Acute liver failure ascribed to nefazodone: importance of 'postmarketing surveillance' for recently introduced drugs. Ned Tijdschr Geneeskd 2000; 144 (41):1964–7.
116 116 Choi S. Nefazodone (Serzone) withdrawn because of hepatotoxicity. CMAJ 2003; 169 (11):1187.
117 117 Edwards IR. Withdrawing drugs: nefazodone, the start of the latest saga. Lancet 2003; 361 (9365):1240.
118 118 Stewart DE. Hepatic adverse reactions associated with nefazodone. Can J Psychiatry 2002; 47(4):375–7.
119 119 Kalgutkar AS, Vaz AD, Lame ME, Henne KR, Soglia J, Zhao SX, et al. Bioactivation of the nontricyclic antidepressant nefazodone to a reactive quinone‐imine species in human liver microsomes and recombinant cytochrome P450 3A4. Drug Metab Dispos 2005; 33(2):243–53.
120 120 Dykens JA, Jamieson JD, Marroquin LD, Nadanaciva S, Xu JJ, Dunn MC, et al. in vitro assessment of mitochondrial dysfunction and cytotoxicity of nefazodone, trazodone, and buspirone. Toxicol Sci 2008; 103(2):335–45.
121 121 Zhang J, Doshi U, Suzuki A, Chang CW, Borlak J, Li AP, et al. Evaluation of multiple mechanism‐based toxicity endpoints in primary cultured human hepatocytes for the identification of drugs with clinical hepatotoxicity: results from 152 marketed drugs with known liver injury profiles. Chem Biol Interact 2016; 255:3–11.
122 122 Kostrubsky SE, Strom SC, Kalgutkar AS, Kulkarni S, Atherton J, Mireles R, et al. Inhibition of hepatobiliary transport as a predictive method for clinical hepatotoxicity of nefazodone. Toxicol Sci 2006; 90(2):451–9.
123 123 Oorts M, Baze A, Bachellier P, Heyd B, Zacharias T, Annaert P, et al. Drug‐induced cholestasis risk assessment in sandwich‐cultured human hepatocytes. Toxicol in vitro 2016; 34:179–86.
124 124 Saab L, Peluso J, Muller CD, Ubeaud‐Sequier G. Implication of hepatic transporters (MDR1 and MRP2) in inflammation‐associated idiosyncratic drug‐induced hepatotoxicity investigated by microvolume cytometry. Cytometry A 2013; 83(4):403–8.
125 125 Markham A, Keam SJ. Obeticholic acid: first global approval. Drugs 2016; 76 (12):1221–6.
126 126 Jhaveri MA, Kowdley KV. New developments in the treatment of primary biliary cholangitis ‐ role of obeticholic acid. Ther Clin Risk Manag 2017; 13:1053–60.
127 127 Jindal A, Gupta A, Sarin S. Obeticholic acid in primary biliary cholangitis. N Engl J Med 2016; 375 (20):e41.
128 128 Jones DE. Obeticholic acid for the treatment of primary biliary cirrhosis. Expert Rev Gastroenterol Hepatol 2016; 10(10):1091–1099.
129 129 Silveira MG, Lindor KD. Obeticholic acid and budesonide for the treatment of primary biliary cirrhosis. Expert Opin Pharmacother 2014; 15(3):365–72.
130 130 Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann T, et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 1995; 81(5):687–93.
131 131 Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 1999; 284 (5418):1365–8.
132 132 Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 1999; 3(5):543–53.
133 133 Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 2000; 6(3):507–15.
134 134 Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem 2001; 276 (31):28857–65.
135 135 Frankenberg T, Rao A, Chen F, Haywood J, Shneider BL, Dawson PA. Regulation of the mouse organic solute transporter alpha‐beta, Ostalpha‐Ostbeta, by bile acids. Am J Physiol Gastrointest Liver Physiol 2006; 290(5):G912–22.
136 136 Landrier JF, Eloranta JJ, Vavricka SR, Kullak‐Ublick GA. The nuclear receptor for bile acids, FXR, transactivates human organic solute transporter‐alpha and ‐beta genes. Am J Physiol Gastrointest Liver Physiol 2006; 290(3):G476–85.
137 137 Hirschfield GM, Mason A, Luketic V, Lindor K, Gordon SC, Mayo M, et al. Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology 2015; 148(4):751–61 e8.
138 138 Ali AH, Lindor KD. Obeticholic acid for the treatment of primary biliary cholangitis. Expert Opin Pharmacother 2016; 17 (13):1809–15.
139 139 Erlinger S. Obeticholic acid in primary biliary cholangitis. Clin Res Hepatol Gastroenterol 2017; 41(1):3–5.
140 140 Nevens F, Lindor KD, Jones DE. Obeticholic acid in primary biliary cholangitis. N Engl J Med 2016; 375 (20):e41.
141 141 Spacek LA, Solga SF. Obeticholic acid in primary biliary cholangitis. N Engl J Med. 2016; 375 (20):e41.
142 142van Golen RF. Obeticholic acid in primary biliary cholangitis. N Engl J Med 2016; 375 (20):e41.
143 143 Quigley G, Al Ani M, Nadir A. Occurrence of jaundice following simultaneous ursodeoxycholic acid cessation and obeticholic acid initiation. Dig Dis Sci 2018; 63(2):529–32.
144 144 Chiang JY. Bile acid metabolism and signaling. Compr Physiol 2013; 3(3):1191–212.
145 145 Li T, Chiang JY. Nuclear receptors in bile acid metabolism. Drug Metab Rev 2013; 45(1):145–55.
146 146 Li T, Chiang JY. Bile acid signaling in liver metabolism and diseases. J Lipids 2012; 2012:754067.
147 147 Edwards JE, Eliot L, Parkinson A, Karan S, MacConell L. Assessment of pharmacokinetic interactions between obeticholic acid and caffeine, midazolam, warfarin, dextromethorphan, omeprazole, rosuvastatin, and digoxin in phase 1 studies in healthy subjects. Adv Ther 2017; 34(9):2120–38.
148 148 Zhang Y, Jackson JP, St Claire RL, 3rd, Freeman K, Brouwer KR, Edwards JE. Obeticholic acid, a selective farnesoid X receptor agonist, regulates bile acid homeostasis in sandwich‐cultured human hepatocytes. Pharmacol Res Perspect. 2017; 5(4), e00329.
149 149 Guo C, LaCerte C, Edwards JE, Brouwer KR, Brouwer KLR. Farnesoid X receptor agonists obeticholic acid and chenodeoxycholic acid increase bile acid efflux in sandwich‐cultured human hepatocytes: functional evidence and mechanisms. J Pharmacol Exp Ther 2018; 365(2):413–21.
150 150 Kahler CM, Graziadei I, Vogelsinger H, Desole S, Cima K, Vogel W. Successful treatment of portopulmonary hypertension with the selective endothelin receptor antagonist Sitaxentan. Wien Klin Wochenschr 2011; 123 (7–8):248–52.
151 151 Scott LJ. Sitaxentan: in pulmonary arterial hypertension. Drugs 2007; 67(5):761–70; discussion 71‐2.
152 152 Gholam P, Sehr T, Enk A, Hartmann M. Successful treatment of systemic‐sclerosis‐related digital ulcers with a selective endothelin type A receptor antagonist (sitaxentan). Dermatology 2009; 219(2):171–3.
153 153 Zhang J, Kong W, Wang C. Mechanism of plasma endothelin‐1 level elevation and its relation with pulmonary hypertension in chronic cor pulmonale. Zhonghua Nei Ke Za Zhi 1996; 35(2):110–3.
154 154 Galie N, Hoeper MM, Simon J, Gibbs R, Simonneau G, Task Force for the D, et al. Liver toxicity of sitaxentan in pulmonary arterial hypertension. Eur Heart J 2011; 32(4):386–7.
155 155 Lavelle A, Sugrue R, Lawler G, Mulligan N, Kelleher B, Murphy DM, et al. Sitaxentan‐induced hepatic failure in two patients with pulmonary arterial hypertension. Eur Respir J 2009; 34(3):770–1.
156 156 Lee WT, Kirkham N, Johnson MK, Lordan JL, Fisher AJ, Peacock AJ. Sitaxentan‐related acute liver failure in a patient with pulmonary arterial hypertension. Eur Respir J 2011; 37(2):472–4.
157 157 Hoeper MM, Olsson KM, Schneider A, Golpon H. Severe hepatitis associated with sitaxentan and response to glucocorticoid therapy. Eur Respir J 2009; 33(6):1518–9.
158 158 Owen K, Cross DM, Derzi M, Horsley E, Stavros FL. An overview of the preclinical toxicity and potential carcinogenicity of sitaxentan (Thelin(R)), a potent endothelin receptor antagonist developed for pulmonary arterial hypertension. Regul Toxicol Pharmacol 2012; 64(1):95–103.
159 159 Erve JC, Gauby S, Maynard JW, Jr., Svensson MA, Tonn G, Quinn KP. Bioactivation of sitaxentan in liver microsomes, hepatocytes, and expressed human P450s with characterization of the glutathione conjugate by liquid chromatography tandem mass spectrometry. Chem Res Toxicol 2013; 26(6):926–36.
160 160 Whitley RJ. Sorivudine: a potent inhibitor of varicella zoster virus replication. Adv Exp Med Biol 1996; 394:41–4.
161 161 Whitley RJ. Sorivudine: a promising drug for the treatment of varicella‐zoster virus infection. Neurology 1995; 45 (12 Suppl 8):S73–5.
162 162 Burdge DR, Voigt R, Lindley JI, Gage L, Sacks SL. Sorivudine (BV‐ara‐U) for the treatment of complicated refractory varicella zoster virus infection in HIV‐infected patients. AIDS 1995; 9(7):810–2.
163 163 Pinnolis MK, Foxworthy D, Kemp B. Treatment of progressive outer retinal necrosis with sorivudine. Am J Ophthalmol 1995; 119(4):516–7.
164 164 Wunderli W, Miner R, Wintsch J, von Gunten S, Hirsch HH, Hirschel B. Outer retinal necrosis due to a strain of varicella‐zoster virus resistant to acyclovir, ganciclovir, and sorivudine. Clin Infect Dis 1996; 22(5):864–5.
165 165 Bodsworth NJ, Boag F, Burdge D, Genereux M, Borleffs JC, Evans BA, et al. Evaluation of sorivudine (BV‐araU) versus acyclovir in the treatment of acute localized herpes zoster in human immunodeficiency virus‐infected adults. The Multinational Sorivudine Study Group. J Infect Dis 1997; 176(1):103–11.
166 166 Okuda H, Nishiyama T, Ogura K, Nagayama S, Ikeda K, Yamaguchi S, et al. Lethal drug interactions of sorivudine, a new antiviral drug, with oral 5‐fluorouracil prodrugs. Drug Metab Dispos 1997; 25(5):270–3.
167 167 Okuda H, Ogura K, Kato A, Takubo H, Watabe T. A possible mechanism of eighteen patient deaths caused by interactions of sorivudine, a new antiviral drug, with oral 5‐fluorouracil prodrugs. J Pharmacol Exp Ther 1998; 287(2):791–9.
168 168 Diasio RB. Sorivudine and 5‐fluorouracil; a clinically significant drug‐drug interaction due to inhibition of dihydropyrimidine dehydrogenase. Br J Clin Pharmacol 1998; 46(1):1–4.
169 169 Dawson RM. Reversibility of the inhibition of acetylcholinesterase by tacrine. Neurosci Lett 1990; 118(1):85–7.
170 170 Summers WK, Koehler AL, Marsh GM, Tachiki K, Kling A. Long‐term hepatotoxicity of tacrine. Lancet 1989; 1(8640):729.
171 171 Watkins PB, Zimmerman HJ, Knapp MJ, Gracon SI, Lewis KW. Hepatotoxic effects of tacrine administration in patients with Alzheimer's disease. JAMA 1994; 271 (13):992–8.
172 172 Fredj G, Dietlin F, Barbier G, Jasmin C, Bonhomme L, Esctein S, et al. Comparison of tacrine hepatotoxicity in patients with Alzheimer disease or AIDS. Therapie 1992; 47(3):245–7.
173 173 Becquemont L, Le Bot MA, Riche C, Beaune P. Influence of fluvoxamine on tacrine metabolism in vitro: potential implication for the hepatotoxicity in vivo. Fundam Clin Pharmacol 1996; 10(2):156–7.
174 174 Madden S, Woolf TF, Pool WF, Park BK. An investigation into the formation of stable, protein‐reactive and cytotoxic metabolites from tacrine in vitro. Studies with human and rat liver microsomes. Biochem Pharmacol 1993; 46(1):13–20.
175 175 Hendrickson HP, Scott DO, Lunte CE. Identification of 9‐hydroxylamine‐1,2,3,4‐tetrahydroacridine as a hepatic microsomal metabolite of tacrine by high‐performance liquid chromatography and electrochemistry. J Chromatogr 1989; 487(2):401–8.
176 176 Becquemont L, Ragueneau I, Le Bot MA, Riche C, Funck‐Brentano C, Jaillon P. Influence of the CYP1A2 inhibitor fluvoxamine on tacrine pharmacokinetics in humans. Clin Pharmacol Ther 1997; 61(6):619–27.
177 177 Pool WF, Reily MD, Bjorge SM, Woolf TF. Metabolic disposition of the cognition activator tacrine in rats, dogs, and humans. Species comparisons. Drug Metab Dispos 1997; 25(5):590–7.
178 178 Madden S, Spaldin V, Hayes RN, Woolf TF, Pool WF, Park BK. Species variation in the bioactivation of tacrine by hepatic microsomes. Xenobiotica 1995; 25(1):103–16.
179 179 Sung JH, Yu KH, Park JS, Tsuruo T, Kim DD, Shim CK, et al. Saturable distribution of tacrine into the striatal extracellular fluid of the rat: evidence of involvement of multiple organic cation transporters in the transport. Drug Metab Dispos 2005; 33(3):440–8.
180 180 Fontana RJ, Turgeon DK, Woolf TF, Knapp MJ, Foster NL, Watkins PB. The caffeine breath test does not identify patients susceptible to tacrine hepatotoxicity. Hepatology 1996; 23(6):1429–35.
181 181 Simon T, Becquemont L, Mary‐Krause M, de Waziers I, Beaune P, Funck‐Brentano C, et al. Combined glutathione‐S‐transferase M1 and T1 genetic polymorphism and tacrine hepatotoxicity. Clin Pharmacol Ther 2000; 67(4):432–7.
182 182 Becquemont L, Lecoeur S, Simon T, Beaune P, Funck‐Brentano C, Jaillon P. Glutathione S‐transferase theta genetic polymorphism might influence tacrine hepatotoxicity in Alzheimer's patients. Pharmacogenetics 1997; 7(3):251–3.
183 183 Biglin KE, Faraon MS, Constance TD, Lieh‐Lai M. Drug‐induced torsades de pointes: a possible interaction of terfenadine and erythromycin. Ann Pharmacother 1994; 28(2):282.
184 184 Wynn RL. Erythromycin and ketoconazole (Nizoral) associated with terfenadine (Seldane)‐induced ventricular arrhythmias. Gen Dent 1993; 41(1):27–9.
185 185 Honig PK, Woosley RL, Zamani K, Conner DP, Cantilena LR, Jr. Changes in the pharmacokinetics and electrocardiographic pharmacodynamics of terfenadine with concomitant administration of erythromycin. Clin Pharmacol Ther 1992; 52(3):231–8.
186 186 Woosley RL, Chen Y, Freiman JP, Gillis RA. Mechanism of the cardiotoxic actions of terfenadine. JAMA 1993; 269 (12):1532–6.
187 187 Honig PK, Wortham DC, Zamani K, Conner DP, Mullin JC, Cantilena LR. Terfenadine‐ketoconazole interaction. Pharmacokinetic and electrocardiographic consequences. JAMA 1993; 269 (12):1513–8.
188 188 Zimmermann M, Duruz H, Guinand O, Broccard O, Levy P, Lacatis D, et al. Torsades de Pointes after treatment with terfenadine and ketoconazole. Eur Heart J 1992; 13(7):1002–3.
189 189 Kamisako T, Adachi Y, Nakagawa H, Yamamoto T. Torsades de pointes associated with terfenadine in a case of liver cirrhosis and hepatocellular carcinoma. Intern Med 1995; 34(2):92–5.
190 190 Mason J, Reynolds R, Rao N. The systemic safety of fexofenadine HCl. Clin Exp Allergy 1999; 29 Suppl 3:163–70; discussion 71‐3.
191 191 Balian JD, Rahman A. Metabolic drug‐drug interactions: perspective from FDA medical and clinical pharmacology reviewers. Adv Pharmacol 1997; 43:231–8.
192 192 Davit B, Reynolds K, Yuan R, Ajayi F, Conner D, Fadiran E, et al. FDA evaluations using in vitro metabolism to predict and interpret in vivo metabolic drug‐drug interactions: impact on labeling. J Clin Pharmacol 1999; 39(9):899–910.
193 193 Huang SM, Strong JM, Zhang L, Reynolds KS, Nallani S, Temple R, et al. New era in drug interaction evaluation: US Food and Drug Administration update on CYP enzymes, transporters, and the guidance process. J Clin Pharmacol 2008; 48(6):662–70.
194 194 Yu J, Petrie ID, Levy RH, Ragueneau‐Majlessi I. Mechanisms and clinical significance of pharmacokinetic‐based drug‐drug interactions with drugs approved by the U.S. Food and Drug Administration in 2017. Drug Metab Dispos 2019; 47(2):135–44.
195 195 Aslanian R, Piwinski JJ, Zhu X, Priestley T, Sorota S, Du XY, et al. Structural determinants for histamine H(1) affinity, hERG affinity and QTc prolongation in a series of terfenadine analogs. Bioorg Med Chem Lett 2009; 19 (17):5043–7.
196 196 Kamiya K, Niwa R, Morishima M, Honjo H, Sanguinetti MC. Molecular determinants of hERG channel block by terfenadine and cisapride. J Pharmacol Sci 2008; 108(3):301–7.
197 197 Roy M, Dumaine R, Brown AM. HERG, a primary human ventricular target of the nonsedating antihistamine terfenadine. Circulation 1996; 94(4):817–23.
198 198 Suessbrich H, Waldegger S, Lang F, Busch AE. Blockade of HERG channels expressed in Xenopus oocytes by the histamine receptor antagonists terfenadine and astemizole. FEBS Lett 1996; 385 (1–2):77–80.
199 199 Raeissi SD, Hidalgo IJ, Segura‐Aguilar J, Artursson P. Interplay between CYP3A‐mediated metabolism and polarized efflux of terfenadine and its metabolites in intestinal epithelial Caco‐2 (TC7) cell monolayers. Pharm Res 1999; 16(5):625–32.
200 200 Jurima‐Romet M, Crawford K, Cyr T, Inaba T. Terfenadine metabolism in human liver. in vitro inhibition by macrolide antibiotics and azole antifungals. Drug Metab Dispos 1994; 22(6):849–57.
201 201 Herings RM, Stricker BH, Leufkens HG, Bakker A, Sturmans F, Urquhart J. Public health problems and the rapid estimation of the size of the population at risk. Torsades de pointes and the use of terfenadine and astemizole in The Netherlands. Pharm World Sci 1993; 15(5):212–8.
202 202 Pohjola‐Sintonen S, Viitasalo M, Toivonen L, Neuvonen P. Itraconazole prevents terfenadine metabolism and increases risk of torsades de pointes ventricular tachycardia. Eur J Clin Pharmacol 1993; 45(2):191–3.
203 203 Paris DG, Parente TF, Bruschetta HR, Guzman E, Niarchos AP. Torsades de pointes induced by erythromycin and terfenadine. Am J Emerg Med 1994; 12(6):636–8.
204 204 Pohjola‐Sintonen S. Treatment with terfenadine and ketoconazole or itraconazole can cause torsades de pointes ventricular tachycardia. Duodecim 1993; 109(2):164–6.
205 205 Benton RE, Honig PK, Zamani K, Cantilena LR, Woosley RL. Grapefruit juice alters terfenadine pharmacokinetics, resulting in prolongation of repolarization on the electrocardiogram. Clin Pharmacol Ther 1996; 59(4):383–8.
206 206 Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, et al. The cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice. Eur J Clin Pharmacol 1997; 52(4):311–5.
207 207 Honig PK, Wortham DC, Lazarev A, Cantilena LR. Grapefruit juice alters the systemic bioavailability and cardiac repolarization of terfenadine in poor metabolizers of terfenadine. J Clin Pharmacol 1996; 36(4):345–51.
208 208 Rau SE, Bend JR, Arnold MO, Tran LT, Spence JD, Bailey DG. Grapefruit juice‐terfenadine single‐dose interaction: magnitude, mechanism, and relevance. Clin Pharmacol Ther 1997; 61(4):401–9.
209 209 Kohlroser J, Mathai J, Reichheld J, Banner BF, Bonkovsky HL. Hepatotoxicity due to troglitazone: report of two cases and review of adverse events reported to the United States Food and Drug Administration. Am J Gastroenterol 2000; 95(1):272–6.
210 210 Gitlin N, Julie NL, Spurr CL, Lim KN, Juarbe HM. Two cases of severe clinical and histologic hepatotoxicity associated with troglitazone. Ann Intern Med 1998; 129(1):36–8.
211 211 Herrine SK, Choudhary C. Severe hepatotoxicity associated with troglitazone. Ann Intern Med 1999; 130(2):163–4.
212 212 Kaplowitz N. Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov 2005; 4(6):489–99.
213 213 Meier Y, Cavallaro M, Roos M, Pauli‐Magnus C, Folkers G, Meier PJ, et al. Incidence of drug‐induced liver injury in medical inpatients. Eur J Clin Pharmacol 2005; 61(2):135–43.
214 214 Bjornsson ES, Bergmann OM, Bjornsson HK, Kvaran RB, Olafsson S. Incidence, presentation, and outcomes in patients with drug‐induced liver injury in the general population of Iceland. Gastroenterology. 2013; 144(7):1419–25, 25 e1‐3; quiz e19‐20.
215 215 Faich GA, Moseley RH. Troglitazone (Rezulin) and hepatic injury. Pharmacoepidemiol Drug Saf 2001; 10(6):537–47.
216 216 Dixit VA, Bharatam PV. Toxic metabolite formation from Troglitazone (TGZ): new insights from a DFT study. Chem Res Toxicol 2011; 24(7):1113–22.
217 217 Prabhu S, Fackett A, Lloyd S, McClellan HA, Terrell CM, Silber PM, et al. Identification of glutathione conjugates of troglitazone in human hepatocytes. Chem Biol Interact 2002; 142 (1–2):83–97.
218 218 Honma W, Shimada M, Sasano H, Ozawa S, Miyata M, Nagata K, et al. Phenol sulfotransferase, ST1A3, as the main enzyme catalyzing sulfation of troglitazone in human liver. Drug Metab Dispos 2002; 30(8):944–9.
219 219 Kostrubsky VE, Sinclair JF, Ramachandran V, Venkataramanan R, Wen YH, Kindt E, et al. The role of conjugation in hepatotoxicity of troglitazone in human and porcine hepatocyte cultures. Drug Metab Dispos 2000; 28 (10):1192–7.
220 220 Masubuchi Y. Metabolic and non‐metabolic factors determining troglitazone hepatotoxicity: a review. Drug Metab Pharmacokinet 2006; 21(5):347–56.
221 221 Smith MT. Mechanisms of troglitazone hepatotoxicity. Chem Res Toxicol 2003; 16(6):679–87.
222 222 Tafazoli S, Spehar DD, O'Brien PJ. Oxidative stress mediated idiosyncratic drug toxicity. Drug Metab Rev 2005; 37(2):311–25.
223 223 Galati G, Tafazoli S, Sabzevari O, Chan TS, O'Brien PJ. Idiosyncratic NSAID drug induced oxidative stress. Chem Biol Interact 2002; 142 (1–2):25–41.
224 224 Shibuya A, Watanabe M, Fujita Y, Saigenji K, Kuwao S, Takahashi H, et al. An autopsy case of troglitazone‐induced fulminant hepatitis. Diabetes Care 1998; 21 (12):2140–3.
225 225 Uetrecht J. Drug metabolism by leukocytes and its role in drug‐induced lupus and other idiosyncratic drug reactions. Crit Rev Toxicol 1990; 20(4):213–35.
226 226 Funk C, Pantze M, Jehle L, Ponelle C, Scheuermann G, Lazendic M, et al. Troglitazone‐induced intrahepatic cholestasis by an interference with the hepatobiliary export of bile acids in male and female rats. Correlation with the gender difference in troglitazone sulfate formation and the inhibition of the canalicular bile salt export pump (BSEP) by troglitazone and troglitazone sulfate. Toxicology 2001; 167(1):83–98.
227 227 Funk C, Ponelle C, Scheuermann G, Pantze M. Cholestatic potential of troglitazone as a possible factor contributing to troglitazone‐induced hepatotoxicity: in vivo and in vitro interaction at the canalicular bile salt export pump (BSEP) in the rat. Mol Pharmacol 2001; 59(3):627–35.
228 228 Okada R, Maeda K, Nishiyama T, Aoyama S, Tozuka Z, Hiratsuka A, et al. Involvement of different human glutathione transferase isoforms in the glutathione conjugation of reactive metabolites of troglitazone. Drug Metab Dispos 2011; 39 (12):2290–7.
229 229 Hewitt NJ, Lloyd S, Hayden M, Butler R, Sakai Y, Springer R, et al. Correlation between troglitazone cytotoxicity and drug metabolic enzyme activities in cryopreserved human hepatocytes. Chem Biol Interact 2002; 142 (1–2):73–82.
230 230 Stieger B. Role of the bile salt export pump, BSEP, in acquired forms of cholestasis. Drug Metab Rev 2010; 42(3):437–45.
231 231 Shaw PJ, Ganey PE, Roth RA. Idiosyncratic drug‐induced liver injury and the role of inflammatory stress with an emphasis on an animal model of trovafloxacin hepatotoxicity. Toxicol Sci 2010; 118(1):7–18.
232 232 Li AP. A review of the common properties of drugs with idiosyncratic hepatotoxicity and the “multiple determinant hypothesis” for the manifestation of idiosyncratic drug toxicity. Chem Biol Interact 2002; 142 (1–2):7–23.
233 233 Bachoual R, Dubreuil L, Soussy CJ, Tankovic J. Roles of gyrA mutations in resistance of clinical isolates and in vitro mutants of Bacteroides fragilis to the new fluoroquinolone trovafloxacin. Antimicrob Agents Chemother 2000; 44(7):1842–5.
234 234 Gootz TD, Zaniewski RP, Haskell SL, Kaczmarek FS, Maurice AE. Activities of trovafloxacin compared with those of other fluoroquinolones against purified topoisomerases and gyrA and grlA mutants of Staphylococcus aureus. Antimicrob Agents Chemother 1999; 43(8):1845–55.
235 235 Lazarczyk DA, Goldstein NS, Gordon SC. Trovafloxacin hepatotoxicity. Dig Dis Sci 2001; 46(4):925–6.
236 236 Lucena MI, Andrade RJ, Rodrigo L, Salmeron J, Alvarez A, Lopez‐Garrido MJ, et al. Trovafloxacin‐induced acute hepatitis. Clin Infect Dis 2000; 30(2):400–1.
237 237 Chen HJ, Bloch KJ, Maclean JA. Acute eosinophilic hepatitis from trovafloxacin. N Engl J Med 2000; 342(5):359–60.
238 238 Sun Q, Zhu R, Foss FW, Jr., Macdonald TL. Mechanisms of trovafloxacin hepatotoxicity:studies of a model cyclopropylamine‐containing system. Bioorg Med Chem Lett 2007; 17 (24):6682–6.
239 239 Sun Q, Zhu R, Foss FW, Jr., Macdonald TL. in vitro metabolism of a model cyclopropylamine to reactive intermediate: insights into trovafloxacin‐induced hepatotoxicity. Chem Res Toxicol 2008; 21(3):711–9.
240 240 Shaw PJ, Ditewig AC, Waring JF, Liguori MJ, Blomme EA, Ganey PE, et al. Coexposure of mice to trovafloxacin and lipopolysaccharide, a model of idiosyncratic hepatotoxicity, results in a unique gene expression profile and interferon gamma‐dependent liver injury. Toxicol Sci 2009; 107(1):270–80.
241 241 Shaw PJ, Ganey PE, Roth RA. Tumor necrosis factor alpha is a proximal mediator of synergistic hepatotoxicity from trovafloxacin/lipopolysaccharide coexposure. J Pharmacol Exp Ther 2009; 328(1):62–8.
242 242 Shaw PJ, Hopfensperger MJ, Ganey PE, Roth RA. Lipopolysaccharide and trovafloxacin coexposure in mice causes idiosyncrasy‐like liver injury dependent on tumor necrosis factor‐alpha. Toxicol Sci 2007; 100(1):259–66.
243 243 Pascual A, Garcia I, Ballesta S, Perea EJ. Uptake and intracellular activity of trovafloxacin in human phagocytes and tissue‐cultured epithelial cells. Antimicrob Agents Chemother 1997; 41(2):274–7.