Читать книгу Энциклопедия финансового риск-менеджмента - Алексей Лобанов - Страница 36
I. Количественный анализ
В. Е. Барбаумов
1.27. Важнейшие виды случайных процессов
Оглавление1.27.1. Случайное блуждание
Сечением случайного блуждания в момент времени t0 + kh является дискретная случайная величина, закон распределения вероятностей которой имеет вид:
Траектории случайного блуждания изображены на рис. 1.29 (точками выделена одна из траекторий).
Случайное блуждание α (w, t) обладает независимыми приращениями, причем
1.27.2. Биномиальная модель
Случайный процесс β(w, t), определенный на множестве
называется биномиальной моделью (binominal model), если
Сечением биномиальной модели в момент времени t0 + kh является дискретная случайная величина, закон распределения вероятностей которой имеет вид:
Траектории биноминальной модели изображены на рис. 1.30.
Если случайный процесс β (w, t) является биномиальной моделью с параметрами u, d, p, то
Приращения биномиальной модели, вообще говоря, не являются независимыми. Однако случайный процесс ln β (w, t) имеет независимые приращения.
Случайное блуждание и биноминальная модель относятся к случайным процессам с дискретным временем (discrete time process). Важнейшим примером случайного процесса с непрерывным временем (continuous time process) является винеровский случайный процесс.
1.27.3. Винеровский случайный процесс
Случайный процесс w(w, t), определенный на промежутке [t0, +∞), называется винеровским случайным процессом (Wienerprocess), если выполняются следующие условия:
Для моделирования траекторий винеровского случайного процесса w (w, t) на заданном промежутке времени [t0, Т] можно применить метод Монте-Карло.
Сам винеровский случайный процесс редко используется для моделирования финансовых показателей, так как имеет постоянное математическое ожидание. Однако на основе винеровского процесса строятся почти все случайные процессы, используемые в настоящее время для моделирования различных финансовых показателей.