Читать книгу Los problemas de matemática en la práctica didáctica - Bruno D´Amore - Страница 8

Оглавление

1. Problemas, ejercicios y aprendizaje

1.1. Problemas y ejercicios

Consideremos la siguiente conjetura:

Cada número par mayor de 2 es la suma de dos números primos.

Verifiquemos: 14 es 11+3; 26 es 13+13; 80 es 7+73; (...) Por cuantas verificaciones se hagan, con números pares grandes o pequeños, con un poco de paciencia se encuentra una pareja de adendas primos que cumplen dicha condición.

¿Es éste un problema?

Una primera respuesta ingenua de un profesor de primaria fue: «No, no es un problema porque no hay una pregunta». Quien piensa esto o bien deja de leer este libro o lo debe leer con mucha atención. No hay una pregunta explícita, pero se trata de un problema, claro está.

Se trata de:

• demostrar esta afirmación (y entonces la conjetura se vuelve un teorema, es decir una afirmación verdadera en cuanto demostrada); o en cambio

• encontrar un ejemplo que contradiga la afirmación, o sea “exhibir” un número n par mayor de 2 y demostrar que no existen dos números primos cuya suma sea n.

Se resuelve el problema en uno u otro caso4.

Otra conjetura:

Estamos en una clase de 18 alumnos y queremos ir de excursión viajando en un autobús que cuesta 250.000 pesos; sin embargo, 2 de nosotros no pueden pagar. Si los 16 restantes contribuyen con 40.000 pesos cada uno, lo podremos hacer.

También en este caso la pregunta es implícita: ¿Es cierto o no que lo podremos hacer?

Esta vez es fácil transformar la conjetura y darle un valor de verdad: basta con hacer una multiplicación y verificar. ¿Se trata de un problema? No hay pregunta explícita, pero hay una situación que pone de presente una cuestión que hay que resolver. Podríamos llamarla “situación problemática”.

Aún otro ejemplo:

Juanito va al mercado con 600 pesos, compra huevos a 30 pesos cada uno y gasta todo. Regresando, rompe 3. ¿Cuántos huevos lleva a casa?

He ahí todos los ingredientes en el lugar preciso para obtener lo que en la escuela se llama problema: datos numéricos, una situación ficticia aun cuando comprensible e imaginable, una sugerencia semántica sobre las operaciones necesarias. Un verdadero y típico problema escolar. También con datos inútiles.

Sugiero una clasificación banal pero útil y muy difundida, entre

• problemas

• ejercicios.

Tanto los problemas como los ejercicios implican situaciones problemáticas causadas por varios factores: la propuesta del profesor (más o menos motivada), el test, la situación real y efectiva en la cual se encuentran el alumno o la clase, (…) Pero los ejercicios se pueden resolver utilizando reglas ya obtenidas, o en vía de consolidación y que, por lo tanto, entran en las categorías: refuerzo o evaluación inmediata. En cambio, los problemas involucran el uso de más reglas (algunas deben ser explicitadas precisamente en el momento) o una sucesión de operaciones cuya elección es un acto estratégico, a veces creativo, del alumno mismo.

Se entiende bien que las anteriores no son definiciones propiamente dichas: hay casos límite que se pueden interpretar en las dos posiciones. A mi modo de ver, se trata de un comportamiento que juega con los roles relacionales profesor-alumno, más que de una verdadera línea divisoria.

Tanto así que una situación problemática puede dar lugar a un problema o ejercicio según la situación didáctica. Veamos un ejemplo: se entrega un objeto circular plano (por ejemplo, la tapa de una olla) y se pide al alumno evaluar la longitud del contorno (una circunferencia).

En el primer año de primaria éste es un problema; en el grado octavo es (debería ser) un ejercicio.

Entran en juego también una serie de factores anexos:

• la motivación, como veremos más profundamente en el Capítulo 2, por la cual la distinción ejercicio/problema puede depender del comportamiento, de factores emocionales o emotivos, del rol que tiene la ejercitación en clase, del contrato que se ha venido creando, etc.;

• la mayor o menor cercanía de las situaciones problemáticas propuestas con la realidad. Me explico mejor. Usualmente los ejercicios de tipo escolar son del todo ficticios. Aquel Juanito que va al mercado con 600 pesos para comprar los huevos y que luego rompe 3, no existe y ningún niño de la clase se identifica con él: la situación es creíble, pero ficticia, nunca vivida. En cambio, un gasto para la excursión dividido entre 16 puede ser verdaderamente una situación problemática vivida en la realidad, a tener en cuenta para solicitar el análisis matemático. Se trata de decir correctamente los términos de la cuestión verbalmente (oral o escrito), hacerse una imagen mental, hacer que cada niño tenga un modelo matemático de la cuestión y, luego, pasar a la solución concreta: cuánto dinero debe pedir cada uno a sus padres para participar en la excursión.

No es necesario que la situación problemática sea experimentada en primera persona, la cosa es más sutil. En una clase de tercer año de primaria en la periferia de Bolonia, durante el segundo cuadrimestre, a instancia de ciertos discursos, se propuso el asunto de evaluar los gastos asumidos por la dirección didáctica en un año por concepto de energía eléctrica y calefacción. La situación problemática podría haberse considerado ficticia al principio, pero luego, mientras se procedió con el estudio de los recibos, la entrevista a un conserje, la visita a la empresa del gas, etc., la situación se enriqueció con la experiencia directa que la transformó de ficticia a real y concreta.

Decía que la motivación juega un rol no secundario: en un grupo interesado, la construcción de la sucesión de Fibonacci 1, 1, 2, 3, 5, 8, 13, (...), relacionada, en la historia y en las circunstancias, al aumento ideal de la población de las parejas de conejos de cría, sí es ficticia (porque en la realidad ninguno cría conejos en la ciudad y muchos niños nunca han visto un conejo real), pero con tal vínculo emotivo (el contexto se vivió con gran vivacidad) se convirtió en problema: cada uno quería dar su contribución personal que iba más allá de la simple operación aritmética (todo saben que cada número de la sucesión es la suma de los dos precedentes).

Queda aclarar, pero no es trivial, qué es la situación problemática en relación con el problema.

Apropósito de esto, tenemos más de una interpretación; escojo, por ahora, dos:

• la de Boero (1986), según la cual la situación problemática es «el significado del texto» (mientras que el texto es «un sistema de signos» que la codifica);

• la de Borasi (1984), según la cual la situación problemática es «el contexto en el cual el problema propuesto tiene sentido».

Propongo una definición más amplia, en alternativa:

la situación problemática es el sistema de las competencias reales en las cuales se puede imaginar todo aquello descrito en un texto y su significado (semántica), dentro de la experiencia del niño individual (el sistema es específico para el problema dado).

Con esta definición, la situación problemática recuperaría aspectos semánticos, pragmáticos y experienciales.

El lector debe aceptar el hecho que en esta materia no encontrará definiciones precisas, como en Matemática; aquí se delinean tesis y conceptos en la manera más detallada posible, llevando al examen de la propia idea, no demostraciones o pruebas irrefutablemente unívocas, sino solicitudes traídas desde la experiencia personal de estudiosos o investigadores de la Didáctica de la Matemática.

Llegaré a proponer varios modelos relacionados con la resolución de problemas. Pero es muy temprano; para poder describirlos necesito de otros materiales.

Aquí quiero todavía recordar la importancia que cobra, tanto en la resolución de los ejercicios como (y aún más) en la de los problemas, la formalización del lenguaje común en términos matemáticos. Una vez el texto es bien entendido y se hace una imagen mental (personal), puede ser útil (y, de hecho, en la mayoría de los casos lo es) “matematizar” la situación. Muy a menudo, esto implica la traducción del lenguaje común al lenguaje matemático.

Por ejemplo, en el ejercicio de los huevos que compró Juanito, la solución es, formalmente: 600:30–3. En el caso de la conjetura de los números pares, se trata de demostrar que:

(∀x)(x=2n /\ n>1)→[(∃y)(∃z)(x=y+z) /\ (∀h)(∀k) (¬∃m)(m≠l /\ m≠y /\ y=mh) /\ (¬∃p)(p≠l /\ p≠z /\ z=pk)] [x, y, n, z, h, k, m, p ∈ N]

La primera formulación aparece en términos aritméticos muy elementales; la segunda en términos de formalización lógica, un poco más compleja.

Pero entonces ¿Qué es un problema? ¿Existe una definición?

No puedo más que recordar (por ahora) la célebre frase de uno de los más conocidos estudiosos de la resolución de problemas matemáticos, George Polya (1945):

Resolver problemas significa encontrar un camino para salir de una dificultad, un camino para reaccionar ante un obstáculo, para lograr un fin que no sea alcanzable inmediatamente. Resolver problemas es una empresa específica de la inteligencia y la inteligencia es el don específico del género humano: resolver problemas se puede considerar la actividad más característica del género humano.

Propongo también la afirmación de Karl Duncker (1945), quien evidencia exclusivamente el objetivo:

Surge un problema cuando un ser viviente tiene una meta, pero no sabe cómo alcanzarla.

[Una colección de respuestas a la pregunta «¿Qué es un problema?» se encuentra en Ferri (1989)].

Como se ve, no hay definiciones sino precisiones, puntualizaciones, clarificaciones: no hay problema si no hay una situación problemática que cree una pregunta, cuya la respuesta sea, por alguna razón, causa de dificultad.

Nota bibliográfica

Para la redacción de esta sección, además de los textos ya citados, hice uso también de (Antiseri, 1985; Borasi, 1984, 1986a; Duncker, 1969; Polya, 1954; Petter, 1985; Aebli, 1961).

1.2. Resolución de problemas, formación de conceptos y “teoremas en acto”

Con ese título, esta sección requeriría un libro por sí sola; empezaré a tratar esta problemática aquí para después retomarla varias veces más adelante, de manera más o menos explícita y refiriendo textos oportunos.

En una didáctica moderna, no se requiere un comportamiento pasivo por parte del alumno: «Haz esto y esto en una situación de este tipo»; en cambio, se requiere y se favorece un conocimiento activo que se transforme en “saber qué hacer” (lo podemos llamar “eficiencia”). Todos están sustancialmente de acuerdo con el hecho que la solución de problemas y el saber escoger cómo comportarse en situaciones problemáticas son una manera excelente de formar conceptos. Pero, concretamente, es muy difícil establecer lo que esto significa verdaderamente.

Debemos a Gérard Vergnaud (1985a) un muy buen intento por explicar este punto y en él me inspiro para lo que sigue.

Es bien sabido que, para explicar el modelo de desarrollo mental de los niños, Jean Piaget recurre a varios esquemas, entre los cuales recuerdo el esquema de “permanencia del objeto”. Sus experimentos son famosos; por ejemplo, moviendo de manera evidente de un lugar A a un lugar B un objeto escondido en ambos casos (por ejemplo, A debajo de un tapete y B debajo de una toalla), durante cierto período de tiempo, un niño muy pequeño seguirá buscando el objeto en el punto del cual fue movido. El niño solo entiende lentamente lo que es una especie de principio general de permanencia; tal permanencia, por ejemplo, tendrá que ver, más adelante, con el valor cardinal de un número, cantidad, longitud, amplitud, masa, (…) Al lado de la permanencia de un objeto, se considera la invariabilidad de ciertas relaciones de tipo más abstracto y, por lo tanto, capaces de constituir una conquista más tardía. Por ejemplo, la relación “ser hijo de” que es bien comprendida por el niño si la pareja ordenada es (yo; mi papá), y es rechazada a largo plazo si la pareja se vuelve (mi papá; mi abuelo). Tal permanencia de las relaciones (que se llama “invariante relacional”) es, por así decirlo, la base de la comprensión de los verdaderos “teoremas”, por ejemplo:

Si A es menor que B y B es menor que C, entonces A es menor que C.

Aunque se haya comprendido plenamente que «A es menor que B» y que «B es menor que C», permanece el hecho que la afirmación «A es menor que C» puede ser reconocida haciendo la prueba (comparando, donde sea posible, A y C), o “deduciéndola” de las dos primeras. Sabemos que se trata de la propiedad transitiva de la relación de orden “es menor que”: si se verifica de la primera forma (heurística) no es más que entrar en contacto con una invariante relacional; pero si se “deduce” de la segunda forma (lógica), entonces se puede hablar de un teorema en acto, como propone Vergnaud.

Un buen ejemplo que he oído usar de Vergnaud mismo en una escuela de verano es el de un niño que debe decidir cuántos puestos organizar en la mesa para los invitados; algunos invitados están dentro de la casa (a), otros están en el jardín (b); los puestos en la mesa deben ser entonces a+b. Se trata de un teorema en acto: el niño ha aplicado una regla de la cardinalidad:

card (X U Y) = card X + card Y

cuáles que sean los conjuntos X y Y con X∩Y=∅.

Es claro que la toma de conciencia de tales teoremas en acto constituye una formación genuina de conceptos y que la situación más natural para hacer emerger tales teoremas en acto es la resolución de problemas (mejor si son concretos).

Por ende, se trata, entre otras cosas, de una manera activa y deductiva de ver la resolución de problemas.

Nota bibliográfica

Para la redacción de esta sección, he usado (Furth, Wachs, 1977; Petter, 1984; Vergnaud, 1981a, 1985a, 1990a, 1990b).

Para una crítica a la posición descrita por Piaget, ver (Donaldson, McGarrigle, 1974; Freudenthal, 1973; McGarrigle, Grieve, Hughes, 1978).

Para un estudio detallado y moderno sobre la diferencia entre ejercicio y problema y sobre el aprendizaje estratégico en un contexto teórico más amplio (Fandiño Pinilla, 2008).

1.3. Problem solving y problem posing

En este proceder a manera de espiral, encuentro la necesidad de contraponer dos problemáticas aparentemente opuestas, las del título de la sección.

Ya he hecho notar como uno de los impulsos para aprender es la motivación y la gratificación (placer ‘interno’, es decir satisfacción interna, o el reconocimiento social de ser considerado un buen solucionador de problemas). Por tanto, aparte de la motivación, la actividad de la resolución de problemas puede con razón ser considerada una extensión del aprendizaje de reglas o de maneras de comportarse o de obtención de ejemplos y estrategias, etc.

Tal proceso, difícil de definir, en su mayoría se desarrolla dentro del alumno que lo resuelve, aun cuando las sugerencias que llegan al sujeto que está resolviendo el problema sean notables (facilidades, sugerencias, etc.) bajo la forma de varios tipos de comunicación (verbal o no).

Por muy importante que sea la aplicación de reglas (normas, experiencias, […]) precedentes, vale la pena resaltar que el proceso resolutivo genera también y sobre todo un nuevo aprendizaje. Es cierto que, en primera instancia, aquel que resuelve intenta aplicar reglas (normas, experiencias, […]) precedentes (mejor aún si fueron exitosas); pero también es cierto que, si la situación problemática es oportuna, el sujeto podría no encontrar simplemente una solución análoga o idéntica a una precedente. En cambio, puede encontrar una combinación particular de reglas (normas, experiencias, […]) del todo nueva que enriquecerá el campo de la experiencia y a la cual se puede recurrir en el futuro. En fin, una frase en la que creo firmemente: resolviendo un problema, el sujeto aprende.

En este sentido, el modelo de referencia al que nos aferramos no tiene importancia, si es el de Dewey (1910) o en cambio el primero o el último de Gagné (1962, 1976); la cuestión es muy general y puede funcionar en todos los casos.

Por ahora, podemos llamar a esta serie de fragmentos “estrategias de resolución de problemas”:

• exploración de las reglas (normas, experiencias, [...]) ya conocidas y ya aplicadas;

• descarte de cada una;

• análisis de la situación desde varios puntos de vista;

• construcción de una regla completamente nueva, obtenida de la “dosificación” en manera oportuna de reglas (normas, experiencias, […]) usadas precedentemente;

• verificación de la capacidad de resolver el problema con la regla nueva.

Esta es la razón por la cual Gagné subraya la exigencia que «la expresión problem solving sea usada en general para referirse a problemas nuevos» (nosotros diremos: a verdaderos problemas y no a ejercicios). Él ejemplifica, entre estos, los siguientes: parquear el carro en un lugar permitido y cercano al lugar de trabajo; entender por qué suceden las fases lunares; describir un comportamiento indolente mediante las acciones de un personaje; (…) El hecho que la resolución induzca al pensamiento nos hace hablar de problem solving productivo (precisamente porque se produce un efecto).

Finalizados estos ejemplos, por así decirlo, de la vida real, Gagné (1976) pasa a problemas más cercanos a la praxis escolar, explicando bien la diferencia que hemos indicado mediante la dicotomía problema/ejercicio, pero lo ejemplifica también mediante juegos de cambios de lugar de fósforos, lo que ha sido analizado en modo particular desde un punto de vista psicológico por George Katona (1967). En este estudio, Katona sugiere una sucesión de métodos usados para hacer que los sujetos resuelvan problemas-juego con fósforos:

• hacer los movimientos precisos frente a los ojos del sujeto examinado, haciendo que este último recuerde los movimientos exactos;

• exponer verbalmente las propiedades “matemáticas” de los fósforos en cuestión, notando cómo los fósforos con “funciones” dobles deben ser movidos para tener una función “simple” o haciendo desaparecer por completo las figuras para hacer reconstruir la estructura deseada, con los vínculos deseados;

• proceder al descubrimiento guiado (ésta es la denominación usada): sin enunciar las reglas, proceder paso a paso, ilustrando los cambios producidos, dejando vacíos en la figura original.

Esta sucesión no es casual; según Katona el primer método lleva a un aumento banal de las capacidades; el segundo es mucho mejor; pero solo el tercero, en el cual el sujeto mismo descubre la regla, lleva a poseer satisfactoriamente la competencia. La enunciación verbal de la regla, que sin dudas produce efectos positivos, ayuda a muchos sujetos, pero no a otros. Haber descubierto por sí mismo la regla a aplicar, aún en contextos limitados, produce conocimientos y competencias en todos. Gagné (1973) ilustra otros ejemplos, además de aquel de Katona, entre los que se encuentra el experimento del péndulo de N. R. F. Maier, el cual describiré en breve.

Los resultados de tales experimentos se pueden condensar de la siguiente manera: se produce un efecto positivo en el sujeto que resuelve si se dice exactamente la naturaleza de la actuación (performance) que de él se espera; incluso si no se hace explícitamente, se puede dar una guía en cuanto a la elección de reglas (normas, experiencias, […]) que son útiles para escoger la estrategia, mediante la formulación del problema.

Toda la actividad y la atención del problem solving radican en la resolución.

De otra naturaleza, pero siempre dentro de la misma problemática, es la actividad del problem posing. Esta actividad involucra dos maneras diferentes, pero estrechamente interconectadas, de actuar:

• la creación de un problema basado en la reflexión relativa a un tema de examen;

• la propuesta de las preguntas que analizan situaciones “limítrofes” (externas pero cercanas) a un problema de examen.

Los autores del texto que volvió famoso el problem posing, S. I. Brown y M. I. Walter (1988), distinguen dos modos de actuar diferentes:

• hacer o hacerse preguntas

• preguntarse siempre «¿Y si (...) ?», o «¿Y si no (...) ?»

lo cual da muy buena cuenta de la cuestión.

Una reducción didáctica trivial del problem posing es la actividad consistente en hacer que los alumnos inventen los problemas: ésta ha sido ampliamente estudiada en la investigación en Didáctica de la Matemática y tendremos ocasión de entrar en detalles. Pero el problem posing, en su formulación más general y genuina, debe llevar a nuevos problemas, si bien generados a partir de aquellos presentes en situaciones anteriores. Este tipo de actividad lleva a generar un descubrimiento y en este sentido, a mi modo de ver, se asemeja mucho al que los estudiosos del problem solving han resaltado.

Dado que tendré que retomar este argumento en la siguiente sección, me limitaré a presentar este boceto a manera de resumen.


Experimento del péndulo de Maier del 1930, (Gagné, 1973).

El sujeto examinado es conducido a una habitación de 5 m por 6 m aproximadamente, en la que hay una mesa de trabajo. El sujeto tiene a su disposición tablillas, pedazos de hilo, tiza y abrazaderas. El problema es descrito en estos términos: construya dos péndulos, de manera que cada uno, oscilando y teniendo en cada extremidad una tiza, marque un punto establecido sobre el piso.

Para ilustrar mejor el problema, he aquí la representación de una buena solución proporcionada por sujetos sometidos a la prueba.


Con algunos sujetos, Maier usó la estrategia de recordar problemas precedentes que, en este caso, son, por decirlo así, sub problemas:

• cómo se hace una plomada, teniendo a disposición hilo, abrazaderas y tiza;

• cómo hacer un poste largo, teniendo a disposición dos postes cortos y una abrazadera;

• cómo anclar al techo un objeto prensado entre dos postes.

Maier hizo sugerencias sobre la resolución presentando otro problema: el problema sería más simple si existiese una puntilla y se pudiera clavar un poste al techo. El experimento de Maier mostró cómo las instrucciones adicionales, que permiten recordar soluciones parciales precedentes, llevaron a los sujetos a la resolución del problema con mayor frecuencia, en comparación con aquellos que escuchaban solo el enunciado del problema sin ayudas adicionales. La sugerencia sobre la puntilla (que Maier llamó “dirección”), favorecía más la probabilidad de resolución.

Nota bibliográfica

Para la redacción de esta sección, utilicé (Dewey, 1910; Aebli, 1961; Katona, 1967; Gagné, 1973; Brown, Walter, 1988).

1.4. Problem solving, problem posing y descubrimiento

Empezamos con un ejemplo:

Dados dos triángulos equiláteros, encuentre un tercero, cuya área sea igual a la adición de las áreas de los otros dos. (Tomado de: Brown, Walter, 1988, p. 157).

Dentro del espíritu del problem posing, en cada intento por resolver el problema propuesto se cumple un análisis preliminar. Cada alumno tiene su propia reacción. Se puede notar que faltan datos y por lo tanto preguntar cuál es la naturaleza de la pregunta; ¿Cuál(es) de la(s) propiedad(es) de los triángulos entra(n) en juego?, ¿se espera una solución geométrica (un dibujo), o una numérica? Es claro que cada solucionador puede escoger la estrategia más adecuada de acuerdo con su propio “estilo”. Por ejemplo, un alumno puede decidir que va a estudiar un caso particular con los triángulos dados, uno de lado 3 y el otro de lado 7 y proceder de tal manera, haciendo un dibujo y recortando pedazos de cartulina (el cálculo sugerido por los autores no es, ciertamente, adecuado para niños de escuela primaria, pero quiero resaltar un espíritu independiente de estas contingencias) o usando un software geométrico a este propósito. Sin embargo, pero, aunque se haya encontrado una solución (aproximada), ¿qué sucede si se cambian los datos inventados, 3 y 7?

Lo que quiero subrayar aquí es que el problem posing es una forma de ubicarse dentro del problem solving y que, por ende, las dos problemáticas no son opuestas, sino bastante cercanas. “Plantear un problema” es solo una manera de comprenderlo mejor, de analizarlo mejor; hacerse preguntas que parecerían (…) rebotar la solicitud, puede significar entrar en mayor confianza con el problema.

Por tanto, si se llega a la resolución del problema, el problem posing tiene un efecto a posteriori, porque las preguntas sobre el problema y sobre la solución proporcionada no cesan: ¿se podría hacer de otra manera?, ¿se podría usar otro dato?, ¿hay una manera general de resolver esta cuestión?, ¿alguien ha inventado este método?, ¿cuándo y por qué se planteó este problema? (…) En una situación simétrica se plantea el efecto a priori que es sustancialmente el análisis de todos los detalles del problema antes de proceder con la solución.

En definitiva, el problem posing se ubica dentro de la amplia problemática del problem solving y no se limita a ser simplemente interpretado como un “hacer que los niños inventen problemas”, actividad que, entre otras cosas, es significativa si se conduce de manera motivada y prudente.

A mi modo de ver, dentro de los ejemplos dados por los Autores citados, es pertinente hablar del célebre caso del niño Gauss, muy famoso en las escuelas italianas:

Calcular la suma de los números naturales de 1 a 100.


Es bien sabido que el procedimiento usado por Gauss es el siguiente: se observa que 1+100=101, 2+99=101, 3+98=101, y así hasta la última adición 50+51=101. Por lo tanto, la suma buscada se puede expresar como 50 veces 101. Éste es un buen ejemplo del problem solving que utiliza una manera de entender el problem posing, según lo que se ha dicho antes. En cambio de hacer lo que parece sugerir el texto del problema (es decir una secuencia absurda de cálculos 1+2=3, 3+3=4, 4+4=8, 8+5=13, haciendo 99 adiciones), analizamos el problema con “y si (...)”: «Y si en lugar de adicionar en orden, sumo el primero y el último, ¿qué encuentro?».

Entonces: se descubre una regularidad.

Se obtiene una regularidad adicionando en escala ascendente/descendente: hemos descubierto una regla («Una trampa» como dicen los niños). Pero para hablar de una regla, o de un descubrimiento, y proporcionarle dignidad en el mundo de la Matemática, es preciso que ésta sea general: ¿es siempre válida?, ¿si en lugar de 100 fuera 167?, ¿si en lugar de 1 partiéramos de 34?, ¿si en lugar de un número par tuviéramos un número impar? Y así sucesivamente.

Con base en las preguntas planteadas, hay una actitud analítica (llamémosla fantasía o curiosidad activas) que necesariamente hace que la resolución sea un descubrimiento.

El problem solving como método de aprendizaje exige que el sujeto descubra una regla de orden superior sin ayuda específica. Presumiblemente, el sujeto construye una nueva regla a su manera, aunque no esté en capacidad de comunicarla después de haberla descubierto. Ver específicamente Gagné (1973, p. 268). Este autor, haciendo referencia a los experimentos de Worthen, afirma que el método del descubrimiento (descrito anteriormente) lleva a un transfer amplio de las reglas adquiridas.

También en este caso, es importante señalar cómo la idea de la didáctica del descubrimiento se ha desacreditado en la práctica didáctica.


Las pruebas sobre el uso de los descubrimientos en el problem solving proporcionadas por los experimentos han ciertamente demostrado que las reglas de orden superior deben ser obtenidas mediante el descubrimiento. Muchas veces, por ejemplo, en el aprendizaje de los adultos, una guía llena de descripciones verbales puede ser tan completa que la regla a ser aprendida se enuncia verbalmente durante el proceso mismo de aprendizaje. La clave de la adquisición de una regla de orden superior no radica solamente en el método del descubrimiento. No obstante, la evidencia sugiere fuertemente que la adquisición de una regla de orden superior mediante el problem solving produce una capacidad muy eficiente, que permanece durante un período de tiempo importante. (Ver específicamente Gagné, 1973, p. 269; aquí Gagné cita estudios de Worthen, Shulman y Keislar, Ausubel, Gagné y Bessler, Guthrie, que no retomo en su totalidad).

Por lo tanto, se ve el problem posing como elemento determinante del proceso del problem solving y de preludio al descubrimiento.

Sin embargo, me parece honesto y necesario señalar que el problem solving no puede ser siempre exitoso. Por ejemplo, si las reglas a encontrar son de una complejidad superior a aquella a la cual puede llegar el sujeto, no se podrá tener más que una solución parcial (en casos particulares). Pero sobre este tema regresaré más delante.

Nota bibliográfica

Para la redacción de esta sección, hice uso de (Brown, Walter, 1988; Gagné, 1973).

Sobre el transfer, ver (Barth, 1990; Roveda, 1979).

1.5. Tipos de aprendizaje

Ya que resolver problemas es aprender, no resulta inútil, en este ámbito, analizar los diferentes tipos de aprendizaje; muchos estudiosos han buscado clasificaciones a propósito de este tema: entre las cuales se encuentra la afortunada descripción de Gagné (1973), expuesta brevemente en esta sección.

Hay que decir, para evitar problemas, que el Gagné al quien me refiero en estos primeros capítulos, es aquel que publicó ediciones sucesivas desde 1970 (hasta la tercera en 1977) de su exitoso libro The Conditions of Learning, cuya primera edición apareció en 1965. Una sucesiva edición del mismo libro salió en 1985, con el mismo título, con una nueva editorial: Holt, Rinehart and Winston Inc. a Cbs College Publishing. El éxito de la primera versión del libro fue tal que aún hoy Gagné es recordado por su vieja posición, la cual presentaré en estos primeros capítulos. La utilizo como base, como trampolín, para poco a poco alejarme de ella de manera crítica. Por otro lado, es de resaltar que anteriormente hice referencia al Gagné más reciente (en la sección 1.3.).

• I tipo: aprendizaje de señales. Se trata del aprendizaje a través de un estímulo que produce efectos, repetido más de una vez; a tal punto que, aunque el estímulo no produzca más el efecto, se obtiene una respuesta. Se trata de la díada estímulo/respuesta, ampliamente estudiada por parte de los psicólogos, entre los cuales se destaca ciertamente el nombre de Pavlov. Hay que subrayar que las respuestas voluntarias no pueden ser aprendidas de esta manera.

• II tipo: aprendizaje estímulo/respuesta. Es la especialización del tipo precedente, típica tanto en el aprendizaje animal como en el humano. Se distingue del primer tipo por el resultado. La respuesta del sujeto, en este caso, es un acto preciso y delimitado, mientras que en el primer tipo se trata de una respuesta genérica y emotiva. Por ejemplo, el perro se entrena para “dar la pata” con la repetición de los siguientes dos estímulos: se le dice «¡Da la pata!» mientras, contemporáneamente, se le levanta la pata con la mano, reforzando el gesto con cumplidos, caricias o premios. Ferster y Skinner al final de los años 50 estudiaron precisamente este ejemplo con lujo de detalles. Si con S → R se indica el proceso estímulo/respuesta del tipo I, se propone usar Ss → R para indicar el tipo II, donde el símbolo Ss es el estímulo externo sumado al interno (propiocepción). La capacidad conseguida ha sido largamente estudiada por Skinner (experimentos sobre el aprendizaje de ratones en laberintos) y también ha sido propuesta para explicar varios aprendizajes en niños muy pequeños, por ejemplo, el aprendizaje de palabras. (Pero existen varias reservas al respecto).

• III tipo: concatenación. Se trata de una multiplicidad de aprendizajes del II tipo concatenados entre sí. Por ejemplo, a un perro se le puede enseñar primero a dar la pata a quien se lo pide e inmediatamente después a ladrar, como señal de saludo. Este tipo de aprendizaje fue estudiado ampliamente para tratar de comprender los procesos evolutivos en niños pequeños. Lo que se sugiere es que cada uno de los “eslabones” de la “cadena” debe ser estable (es decir cada Ss debe llevar su R de manera sólida) y que debe haber “continuidad” entre cada uno de los eslabones (en términos esencialmente, pero no solamente, de tiempo). Entonces, asegura Gagné, «cuando las dos condiciones precedentes se ven plenamente satisfechas, resulta que la adquisición de una cadena no es un proceso gradual, sino que sucede en un solo momento».

• IV tipo: asociación verbal. Se trata de una subespecie del tipo anterior, en la que la respuesta R es una palabra. Por ejemplo, se le muestra un fósforo a un niño diciéndole el nombre más de una vez (un caso particular es el del uso de una lengua que no sea la propia, la materna, del sujeto que aprende, por ejemplo, otro idioma). Esto parece estimular un espacio de “conexión codificante” (que luego se vuelve automática) en el sujeto. Según varios investigadores es precisamente en el IV tipo en el que se activa un mecanismo típicamente humano; mientras los tres tipos anteriores son procesos de aprendizaje que podrían resultar exitosos tanto para animales como para seres humanos, el cuarto tipo constituye una restricción.

• V tipo: aprendizaje de distinciones. Los aprendizajes de tipo II, aun siendo parte de una concatenación, son hechos aislados. Se trata, por lo tanto, de aprendizajes “simples”. Sin embargo, precisamente por este motivo, así como son fáciles de almacenar también son fáciles de olvidar (“sofocados”, por ejemplo, por otra actividad). Si alguien es sometido al aprendizaje de muchos ejemplos de tipo II, o de varias concatenaciones de tipo III, es fácil que se olvide de todo o se confunda. No obstante, se activa un aprendizaje diferente, llamado “por distinción”. Se trata de “vincular” objetos (o nombres) aprendidos mediante relaciones debidas a invenciones o estilos personales, que no siempre se pueden codificar o hacer explícitas. Esto parece permitir la interferencia entre diferentes concatenaciones, lo cual parece ser la causa principal por la cual se olvida lo aprendido. En este punto, aparece una discusión frecuentemente escuchada por los psicólogos: ¿La distinción puede ser un hecho “mecánico”? Dicho de otra forma, se puede aprender sin olvidar, si voluntariamente se asocia a cada concatenación una relación explícita entre objetos (o nombres) para hacer que el recuerdo sea más fácil. El estudio de esta cuestión (procesos de memorización) ha puesto el acento sobre otro tema que pasaré por alto: ¿Qué quiere decir “mecánico” en este ámbito?

• VI tipo: aprendizaje de conceptos. Hasta ahora hemos aprendido a hacer ciertos movimientos, a reconocer los objetos nominados, a dar nombres nuevos a objetos conocidos; pero lo que nos interesa es el aprendizaje de algo más elevado: los conceptos. Este tipo de aprendizaje está fuertemente relacionado con la capacidad de “representación interna”, es decir la capacidad de manipular simbólicamente el ambiente externo, sin intervenir en éste físicamente, simplemente imaginando tal manipulación. Un ejemplo banal: imaginar lo que le sucedería al ambiente en el que me encuentro (mi estudio, en Bogotá, en el que escribo rodeado de 10000 libros) si un espíritu maligno cortara asimétricamente las bases de las bibliotecas. Concretamente, no sucederá jamás (¡eso espero!) pero puedo muy bien imaginar las consecuencias. Ahora bien, parece que algunos primates superiores tienen destellos de este tipo de capacidad, pero es seguro que la consciencia y madurez plena de esto reside sólo en el complejo mecanismo del cerebro humano. Aprender un concepto significa aprender a clasificar las situaciones estimulantes en términos de propiedades abstractas como colores, formas, posiciones, números y similares. Por ejemplo, la generalización que hace un niño, incluso en edad preescolar, al llamar “cubo” o “dado” a tal forma independientemente de su dimensión, color o peso, pertenece a este tipo de aprendizaje. La definición matemática del cubo, con términos precisos, aunque pertenecientes al lenguaje común, no ayuda en el acto del aprendizaje puro; en el caso del aprendizaje se trata de un acto interno, intuitivo e interior. Me parece aún más estimulante el estudio psicológico de la manera como se da el aprendizaje de tipo abstracto; por ejemplo, el aprendizaje de lo que significa “estar en medio”, cuando no solo cambian las propiedades de los objetos (como en el caso de cubos diferentes), sino que cambian también los objetos mismos. Aquí y en los casos análogos resulta esencial la variedad de los estímulos, aún más si a este aprendizaje se asocia, como sucede muy frecuentemente, el uso de una terminología nueva. Un adulto, dada su vasta experiencia lingüística, supera la falta de información circunstancial (relativa al caso específico) haciendo uso de conocimientos análogos; sin embargo, este tipo de aprendizaje en el niño resulta sorprendente. Tanto es así que un adulto puede aprender fácilmente conceptos abstractos solo basándose en definiciones verbales, esto en cambio no puede suceder en un niño pequeño con poca experiencia en el uso del lenguaje.

• VII tipo: aprendizaje de reglas. Entre tanto se debe aclarar qué se entiende por “regla”. Se puede pasar de reglas sencillas a reglas muy complejas. Las primeras se pueden simplificar mediante frases en las que se den condiciones a respetar (por ejemplo: «En alemán el artículo determinativo “die” acompaña un sustantivo femenino»). En este caso, se trata de una asociación verbal que comunica una idea que se debe tener presente como regla. O sea: no basta con saber repetir la concatenación verbal para poder decir que se ha aprendido la regla; a lo sumo se sabrá expresar la regla. Ocurre saberla aplicar en un cierto número de ejemplos significativos. Por lo tanto, una regla es una cadena de dos o más conceptos. Ésta puede ser expresada por medio de formulaciones como «Si A entonces B» («Si hay un sustantivo femenino, entonces debo precederlo de “die”»). A propósito del estilo más eficaz para aprender reglas, hay quien afirma que consiste en dar la regla en modo explícito y luego pedir que se use en varios ejemplos; otros en cambio sugieren el procedimiento inductivo inverso: dar ejemplos a partir de los cuales se pueda obtener la regla (proceso de descubrimiento). Los segundos temen que se puedan utilizar formulaciones verbales como atajos y que en lugar de cadenas conceptuales se llegue a obtener solo cadenas verbales. (El ejemplo clásico es aquel del estudiante que sabe “decir” la regla con palabras, pero que no sabe aplicarla en un caso concreto).

• VIII tipo: problem solving. Adquiridas las reglas, ya hemos visto en que sentido el ser humano pude resolver problemas. Por lo tanto, aceptando esta escala, se trata del aprendizaje más elevado y significativo. La acción de resolver un problema se concluye, en estos casos, en un aprendizaje realmente sustancial. La mutación de las capacidades del individuo es tan claro y explícito como en cada uno de los otros tipos de aprendizaje. El aprendizaje mediante problem solving lleva a nuevas capacidades del pensamiento.

Los ocho tipos de aprendizaje van, en la escala proporcionada por Gagné (1973), del más simple al más complejo y completo; y cada uno es prerrequisito para el o los sucesivo/s (aunque se puede hacer directamente una distinción, V tipo, a través de estímulo/respuesta, I y II tipo). Los estudios al respecto son tan vastos y profundos que no me puedo ni limitarme a recordarlos (remito a los textos citados sucesivamente, que son ricos en bibliografía pertinente). Termino entonces confesando a los lectores que expuse, en esta sección, una teoría casi ingenua, básica, no la más moderna; lo que es suficiente para nuestro objetivo (actualmente, por ejemplo, no se acepta esta tipología lineal, sino que se prefiere una más ramificada). En las indicaciones bibliográficas aconsejaré lecturas mucho más actualizadas sobre estos fascinantes temas y volveré sobre este argumento más adelante.

En el caso particular de la Matemática, los tipos que más nos interesan siguiendo las mismas fuentes son:

• Tipos I y II: señales y S/R. Este tipo de aprendizaje parece ser la base de la adquisición de ideas y conceptos matemáticos sucesivos de gran importancia. Es sobre estos tipos de aprendizaje que nos debemos basar para entender el interesante fenómeno por el cual, aún en edad preescolar e incluso antes del kínder, el niño aprende Matemática, tanto así que hoy en día los programas de Matemática de la escuela primaria en todo el mundo sugieren no subestimar las competencias matemáticas precedentes de los niños, sino valorizarlas y basar en ellas las nuevas ideas que se busca formar. Un análisis de las “capacidades matemáticas básicas” (para caracterizarlas, en el pasado, sugerí un sustantivo bastante afortunado: “protomatemática”) es una actividad intelectual muy estimulante. Se pueden añadir los nombres de los números, los nombres de algunas figuras recurrentes en geometría, la actividad de imitar dibujos con el lápiz, la denominación de la sucesión de los números naturales, etc. Cabe precisar que ninguno de estos aprendizajes es “adulto”, completo o preciso. Por ejemplo, no es seguro que los nombres de los números correspondan exactamente a los números mostrados (un caso común es el del niño que muestra tres dedos y dice «Dos»); no es seguro que el nombre de una figura sea el que un adulto diría (un caso común : el bloque con forma de triángulo es llamado “techo” por la función que cumple en la construcción de las casitas); la sucesión de los números puede ser correcta en términos de ritmo pero avanzar saltuariamente en cuanto al nombre de los números (uno, dos, tres, seis, nueve, […]). Sin embargo, en la base de cada uno de estos aprendizajes, hay una respuesta de tipo matemático importante provocada por señales y estímulos. Por ejemplo, en la base de la sucesión de los números, aun siendo incompleta, hay una consciencia confusa que se está consolidando:

• cada número tiene su propio nombre;

• cada número tiene un sucesivo bien determinado;

• se empieza con uno;

Empezando con un número bien definido como primero, cada uno de los demás se obtiene adicionando una unidad.

• Tipo III: concatenación. Al contrario de lo que se piensa, el aprendizaje por concatenación no verbal está presente como fundamento de adquisiciones importantes en Matemática, relacionadas, por ejemplo, con la escritura al hacerse dueño de letras, símbolos y figuras geométricas.

• Tipo IV: asociación o secuencias verbales. En este caso, viene inmediatamente a la mente la secuencia de los números naturales de la que hablé anteriormente. Sin embargo, mientras precedentemente no hablé más que de un hecho fonético, aquí la interiorización es tal que se puede hablar del aprendizaje de la secuencia (nótese: aunque ésta sea incompleta). Esto juega un rol importante en el aprendizaje matemático del niño; por ejemplo, el momento en el que el niño ve 6 objetos y usa el número cardinal 6. Esto puede darse:

• a simple vista; en tal caso, parecen tener un rol una o más configuraciones particulares (estudiadas por la psicología de la forma, la Gestalt; retomaré este tema ampliamente más adelante);

• por conteo: 1, 2, 3, 4, 5, 6, donde el último número ordinal es el número cardinal del conteo. En este caso, los niños tienen diferentes estilos. Hay quien dice el sustantivo 6 con un tono diferente, casi de descubrimiento. Hay quien cuenta hasta 6 y luego repite el número 6. El tipo IV no se limita solamente a los primeros años de vida del niño, por el contrario, permanece en el tiempo y lo acompaña durante su vida de (…) aprendiz de Matemática. Aprender los signos de las operaciones, las letras que representan elementos geométricos, los nombres de figuras jamás vistas, etc., todo lo que está relacionado con este mismo tipo de aprendizaje, no obstante más consciente.

• Tipo V: distinción y desambiguación. Se trata de otro tipo de aprendizaje que acompaña al alumno por un tiempo largo, iniciando muy temprano. Está presente, por ejemplo, en el campo numérico cuando se reconoce la diferencia entre un conjunto de 3 o de 5 canicas, más por percepción (el modo en el que las canicas están agrupadas, o la forma que toman los dos conjuntos) que por conteo explícito y, aunque aparentemente trivial, la distinción entre los signos gráficos que indican las letras (puede ser sorprendente, pero tal distinción se empieza a desarrollar en niños a partir de los 3 años y generalmente es mucho más sólida en niños de 5 años). En edades más avanzadas, las distinciones notables relacionadas con hechos formales son aquellas gráficas: la posición de los signos de las fracciones y de los exponentes con respecto a la base, la distinción entre los niveles de los paréntesis (redondos, angulares, corchetes), etc. Puede parecer superficial, pero en la base del aprendizaje de nuevos signos matemáticos y sus funciones específicas siempre hay una distinción: pasarla por alto, por considerarla obvia, puede ser (es) un grave error didáctico.

• Tipo VI: conceptos. Hay conceptos en la base de las adquisiciones matemáticas que son tan familiares y simples que pueden ser considerados obvios: similar, igual, diferente, agregar, quitar, etc. Si se piensa un poco, se descubre que tales conceptos se encuentran en los fundamentos de las operaciones aritméticas, de la descripción y el reconocimiento de las formas geométricas, etc., en fin, de los elementos sobre los cuales se cimienta el entero edificio matemático. Descubrir los conceptos básicos y verificar explícitamente su asimilación (teniendo como objetivo su aprendizaje) es una actividad didáctica de obligatorio cumplimiento. En el pasado, el concepto de conjuntos (y sus sinónimos) fue ampliamente impulsado y, junto con éste, el concepto de elemento. Hoy en día, cuando el entusiasmo excesivo por los conjuntos ha pasado, es aún fundamental, a mi modo de ver, la distinción entre términos colectivos y términos singulares (los cuadrados, aquel cuadrado; los números, el tres). También es obvio que la experiencia juega un papel fundamental en la adquisición de conceptos.

• Tipo VII: reglas. Se trata de un aprendizaje matemático primordial tan evidente que necesita poca explicación. Parece ser casi una peculiaridad de la Matemática, si se pone atención a lo que se dijo anteriormente sobre el término “regla”. Varios autores han contribuido al estudio psicológico del aprendizaje de reglas, entre los que recuerdo a Resnick (1967).

• Tipo VIII: problem solving. Aquí, no hay necesidad de decir otra cosa: todo el libro está dedicado a este tema. Al cual llegaremos paso a paso.

Nota bibliográfica

Para la redacción de esta sección se usaron (Gagné, 1965 [en la edición italiana, ver las pp. 55-96 y 281-324; ejemplos matemáticos (algunos por demás discutibles), pp. 292-302]; Resnick, 1967; AA. VV., 1983 [en particular los capítulos de P. Boscolo, de M. S. Veggetti y de C. Pontecorvo]; Aglì, Martini, 1995; De Zwart, 1983; Hughes, 1982; Pontecorvo, 1983, 1985; Pontecorvo, Pontecorvo, 1985; Sastre, Moreno, 1976).

Se puede encontrar una amplia panorámica de los diferentes modelos de aprendizaje, integrados a los respectivos esquemas de enseñanza que de ellos resultan, en (Ballanti, 1968). La autora dedica las cinco partes del libro al «Desarrollo», la «Adaptación evolutiva», la «Mente», el «Comportamiento y condicionamiento» y finalmente a los «Procesos y secuencias». A mi modo de ver, se trata de un proyecto sistemático de interpretación y lectura que cualquier estudioso de cuestiones didácticas debe conocer.

Asumiré como un emblema de mi punto de vista un fragmento de una célebre obra de R. A. Hinde de 1974 con el cual inicia el libro (Ballanti, 1968): «Es por demás inútil decir que el desarrollo de todas las características que conforman el comportamiento depende tanto de la naturaleza como del ambiente. Ningún carácter depende solamente de los genes o del ambiente».

Parecería de gran importancia disponer de una metodología objetiva capaz de evaluar la eficacia del trabajo desarrollado en la escuela o, en términos más generales, del esquema de enseñanza adoptado; ver (Mariani, 1991).

No se deben olvidar los aportes a los estudios sobre el aprendizaje adelantados por la ciencia cognitiva; para tal propósito, se puede leer la sección 5.4. de (Bara, 1990). Allí, se habla de aprendizaje de primer orden relacionado con el conocimiento tácito donde se sitúa la idea de aprender a aprender; ver también (Bateson, 1976); en esto se encuentra sobre todo la descripción de programas que estimulan el aprendizaje y su evolución histórica. Tendré la ocasión de volver en detalle sobre este tema en más de una oportunidad.

Con una posición muy diferente a la de Gagné, sobre la creación de los conceptos se sitúa (Aebli, 1961, pp. 228-255).

Ver también (Boscolo, 1986b), útil en términos generales y en los términos específicos aquí tratados en las pp. 8-10 (Gagné), 11-12 (Bruner), 13-22 (perspectiva cognitivista): una panorámica breve pero eficaz.

1.6. Aprendizaje operativo

Como dice un proverbio chino asumido como lema del Proyecto Nuffield en los años 70-80, es obvio que “si hago, aprendo”. Pero ese “hacer” puede ser concreto o abstracto y nadie ha dicho que el segundo (abstracto) sea menos productivo que el primero (concreto).

[Sin ir hasta la antigua China, el napolitano Giambattista Vico (1668-1744) afirmaba «verum ipsum factum» lo que esencialmente expresa la misma posición].

Dado que siempre he defendido los laboratorios de Matemática como un lugar para “hacer”, y dado que me parece una tesis evidente, evitaré entrar en detalles, por lo que me limitaré sobre este tema a las referencias bibliográficas al final de la sección.

En cambio, resaltaré un ejemplo de Vergnaud (1981a). Supongamos que hay unas barras incrustadas una sobre la otra, como se indica en la figura, y que haya que extraer la barra A.


¿Qué se debe hacer?

Dado que se pide un “hacer”, es decir una acción, es evidente que hacer varios intentos es un comportamiento espontáneo. «Intento sacar la A, pero no se mueve. Bien: dado que A está bloqueada por F, sacaré la F; pero la E está libre; podría sacarla; (…)» y así sucesivamente.

Claro que es un ejercicio útil dentro de lo que se podría llamar un cálculo de las relaciones: para sacar A, primero se debe extraer F; pero (…) Me parece que no se acentúa suficientemente lo que es inútil hacer: «Si quiero sacar A, es inútil extraer E». Me parece que este dualismo: “es necesario / es inútil”, acierta la dimensión exacta y significativa del sentido que tiene el orden de las operaciones a seguir.

Solo que, si se hace el estudio en forma concreta, a mi modo de ver, se pierde mucho. Una vez hecha una acción, ésta perdura a manera de efecto en la memoria solo durante el tiempo de la acción y por lo tanto no puede influenciar la consciencia profundamente. En casos de este tipo, parece muy fructífero resolver el problema de manera puramente mental, si acaso reforzando la resolución con expresiones verbales, orales o escritas: «Si quisiera sacar A, primero debo extraer F; en realidad, no lo hago, pero supongo que lo quiero hacer; si quisiera extraer F, antes debo (...)». Entonces, hay aprendizajes operativos que no pasan a través de una operación concreta, “realizada”, sino solo imaginada. Esta modalidad refuerza el aprendizaje, favorece la imaginación y obliga a tener una expresión verbal coherente y significativa.

También en la fase de ejecución de los problemas, es esencial que exista el hábito de hacer explícitas las diferentes fases de la resolución, lo que es una forma segura de estudiar significativamente las estrategias resolutivas reales y, niño por niño, el estilo de quien resuelve. (Sin embargo, el análisis crítico de los protocolos de observación y las entrevistas son también “formas” válidas).

Favorecer la imaginación operativa hace posible resolver problemas particularmente difíciles. Tomo prestado otra vez una idea de Vergnaud (1981): «Miguel tiene una vasija con dulces. Inés toma 15 para ella. José le da a Miguel otros 9 dulces. Ahora, Miguel tiene en total 63 dulces ¿Cuántos tenía al principio?».

Niños de tercero de primaria que no tienen el entrenamiento para imaginar la solución, en un porcentaje muy alto, no saben resolver el problema. Niños de la misma edad, entrenados para “ver la situación”, imaginan operativamente las diferentes escenas y hacen las cuentas a la inversa (aunque no formalizándolas): «Cuando José da los nuevos dulces a Miguel, Miguel tiene 63-9 o sea 54. Cuando Inés toma 15 dulces, Miguel tenía 54+15 o sea 69». Operativamente, paso a paso, imaginando las escenas, el porcentaje de solución aumenta notablemente.

Se puede tratar de ayudar a los niños dándoles un esquema gráfico como el siguiente:


¿Cuánto puede ayudar este esquema a la solución dada por los niños? Ayuda mucho en el caso de niños no entrenados a imaginar (el porcentaje de soluciones aceptables pasa, en nuestros experimentos, de casi cero al 60%); ayuda poco en el caso de niños entrenados para imaginar, en el sentido en el que estos niños ya eran buenos en la actividad de resolver este tipo de problemas y por lo tanto el esquema tiene sí una incidencia, pero ésta no es sustancial. De tal manera que el esquema ayuda sobre todo a quien no sabe ayudarse solo.

[También hemos intentado hacer el proceso inverso: dar el problema con el esquema sugerido; entonces, el porcentaje de respuestas correctas (siempre de niños de tercero) es inmediatamente más elevado. Al dar un problema análogo, sin esquema, muchos niños reutilizan uno parecido al entregado anteriormente (en este caso se ve una discreta transferencia de aprendizajes) resolviendo así el problema en un buen porcentaje. Solo que (…) Intentamos dar un tercer problema, para el cual el esquema anterior no tenía ningún sentido. Entonces, constatamos que los niños que siguen un programa de enseñanza usual, aún antes de analizar la solicitud del texto, dibujaban el esquema, adoptando una especie de regla: «Si el esquema gráfico funcionó dos veces, ¡funcionará siempre!». Detrás de este comportamiento está la idea del contrato didáctico en cuanto “el niño tiene la expectativa de modalidades repetitivas”].

Tendremos que volver largamente sobre estos temas, de manera más profunda y desde diferentes puntos de vista.

Sin embargo, antes de proceder, me gustaría resaltar que el problema de Miguel y los dulces parece involucrar con fuerza el concepto de incógnita; quien resuelve se debe hacer una imagen mental fuerte de esta idea: ¿qué debo encontrar exactamente? Y aquí hay dos incógnitas, una que resuelve el problema final y una intermedia, por decirlo así.

Es importante evaluar también este aspecto en el estudio específico de este problema (u otros análogos).

Nota bibliográfica

Para la redacción de esta sección, utilicé (Vergnaud, 1981a; D’Amore, 1988c; D’Amore, 1990-91; Caldelli, D’Amore, 1986).

Otros textos básicos (D’Amore, Marazzani, 2011; D’Amore, Persano, 1985; D’Amore, Sandri, 1991).

Para un fundamento pedagógico sobre el uso de los laboratorios, ver (De Bartolomeis, 1979)

1.7. Jerarquías de aprendizaje y problemas de “inmersión total”

En la sección 1.5. vimos como varios autores, en particular Gagné, proporcionan, por así decirlo, una jerarquía de los aprendizajes, distinguiéndolos desde los más simples (aquellos que se hallan también en los animales) hasta los más complejos. Si aprender a resolver problemas significa en gran medida utilizar conceptos aprendidos, entonces también la escala propuesta por L. E. Bourne (1966) nos puede proporcionar una reflexión útil sobre el tema; Bourne propone 4 tipos fundamentales de tareas conceptuales:

• aprendizaje de atributos: dando un estímulo y proponiendo posibles atributos, el sujeto distingue entre éstos; es un tipo de aprendizaje que está relacionado con la percepción (la individuación de las características típicas de un objeto, aquellas que lo hacen diferente de los demás) y la etiqueta (labeling) (se asocia un sustantivo a un objeto-estímulo);

• uso de los atributos: es la fase sucesiva; hay atributos que el sujeto ha individuado y que, por lo tanto, se encuentran a su disposición; ahora el sujeto escoge aquellos atributos que hacen que el objeto sea parte de un conjunto o categoría (esto sustancialmente es la “tarea de identificación del concepto de un determinado tipo” de Bruner, 1960);

• aprendizaje de reglas: mediante la experiencia, el sujeto aprende reglas comunes para ciertas clases de situaciones;

• uso de las reglas: a su vez, las reglas son un instrumento para adquirir un comportamiento conceptual; éste es el clásico caso de la resolución de problemas. Aún dentro de sus límites (señalados por Boscolo, 1986, pero también por el mismo Bourne), esta clasificación es útil aquí solo para ampliar el panorama de los estudios sobre el tema de las jerarquías del aprendizaje que han fascinado a los psicólogos.

Algunos de ellos han afrontado temas muy particulares; por ejemplo, Gagné, Mayor, Garstens y Paradise publicaron en 1962 una investigación sobre las jerarquías relacionada con la adición de los números naturales (ver Resnick y Ford, 1991, pp. 39-41); Gagné y Briggs (1974) estudiaron la sustracción de números naturales (ídem); etc.

Si bien muchos lectores críticos tienden a despreciar estos análisis (creo que lo hacen sobre todo los lectores matemáticos), es necesario reconocer que tienen al menos una función: hacer reflexionar sobre la complejidad de algo que, desde cierto punto en adelante, se podría pensar que posee el mismo nivel de dificultad, tanto como para sugerir que no hay diferencia entre los casos. En definitiva: ¿es la sustracción en sí la que presenta dificultades conceptuales o son los casos individuales, o son las modalidades en las cuales se presenta que plantean dificultades de diferente tipo? Parecería que la segunda posición no es del todo trivial. Las habilidades estudiadas son habilidades de desempeño es decir lo que el sujeto sabe hacer en casos particulares (dado que no se hacen preguntas abstractas o generales sobre la sustracción, por ejemplo, en sí, pero se proponen situaciones). Sin embargo, Gagné en particular, pero también otros autores, llegan incluso a sacar conclusiones sobre las habilidades intelectuales, las cuales nos interesan más. Además: la naturaleza de las jerarquías de aprendizaje es tal que se pueden distinguir tareas subordinadas a otras y que son componentes de actividades de orden superior; se tendría por lo tanto una especie de aprendizaje no solo en forma de espiral sino también en forma de escalera, en la cual cada peldaño es necesario para poder dar el paso sucesivo. Sobre este tema (denominémoslo “teoría de los prerrequisitos”) ha trabajado por ejemplo Flavell (1972); las capacidades iniciales se transforman en elementos fundamentales para capacidades sucesivas; algunos desempeños y comportamientos fundamentales en el pasado pueden desaparecer del comportamiento de un niño que, después de algún tiempo, ya no tiene necesidad de dar los mismos pasos. Flavell concibe esta jerarquía como una forma de conceptualizar la Matemática misma (más allá de su aprendizaje). También es cierto el hecho que, si una tarea ocupe una posición elevada en una jerarquía de aprendizaje, no significa que sea más difícil de aprender o que requiera más tiempo que tareas anteriores; sin embargo, su posición en la jerarquía de todas maneras indica la “riqueza” de sus componentes. Al contrario, puede muy bien suceder que las tareas de nivel inferior sean las más difíciles de realizar por motivos de edad, falta de hábito u otros. En un estudio de Carroll de 1973, se muestran ejemplos concretos de todo esto: si una tarea considerada muy difícil se descompone en todos sus elementos elementales y el sujeto posee estos elementos, el último “peldaño” se vuelve sencillo y el niño puede realizar la tarea solo y en tiempos breves. Es más, le quedaría fácil transferirlo de una red compleja de peldaños inferiores hasta llegar al último peldaño. Hay que decir que con frecuencia los peldaños inferiores de una jerarquía son los fundamentos de muchos otros aprendizajes y por lo tanto se prestan a transferencias sucesivas incluso en otros ambientes conceptuales: saltarlos para proponer inmediatamente actividades complejas podría ser un error, ya que se eliminarían las bases para otras escalas del aprendizaje. La palabra clave que emerge de estos estudios se puede resumir así: ir de lo simple a lo complejo, en la práctica didáctica.

Sin embargo ¿quién nos puede asegurar que todo esto sea correcto, que tenga sentido, que sea aceptable y funcional?

Muchos psicólogos han dedicado amplios estudios a verificar la validez de estas jerarquías de aprendizaje. Según la técnica usada, podemos distinguir estos estudios en dos categorías: estudios escalares (scaling study) y estudios de adestramiento (training study).

En un scaling study se somete a un grupo de estudiantes a test relativos a los prerrequisitos de una tarea que debe ser objeto de estudio; cada alumno recibe un puntaje + o – en cada “peldaño” (habilidades componentes). Entonces, los estudiantes se organizan del “mejor” (el que tuvo más +) al “peor” (el que obtuvo más –). De tal manera que se provee una tarea de orden jerárquico más elevado y se verifica la evolución del grupo de alumnos. Si la jerarquía de aprendizaje (en esa posición particular) es correcta, tendremos que poseer una escala de respuestas correctas que corresponda al orden de los estudiantes; es decir, el “mejor” es también aquel que resolverá el test de la mejor manera, el “peor” viceversa. Si esto no sucede, entonces la escala de aprendizaje no es la correcta. Guttman en los años 40 (1944) diseñó esta prueba, por lo que la disposición de los + y los – obtenidos por el grupo de estudiantes es llamada escala de Guttman. Otros estudios sobre esta cuestión fueron propuestos por muchos autores, cito el estudio de Wang, Resnick y Boozer (1971) porque se dedica a las diversas tareas básicas en Matemática. De este estudio resultó que no hay dependencia entre la capacidad que tienen los niños pequeños para contar y el saber proponer una correspondencia uno a uno entre los elementos de dos conjuntos; y no solo esto, sino que su posición en una jerarquía es totalmente intercambiable. Este resultado tuvo una gran incidencia sobre cierta legión de defensores a ultranza de lo que se ha denominado Matemática moderna (dada la delicadeza de la cuestión y la “polvareda” que levantó, Wang llevó a cabo otros estudios en 1973, también Gelman y Gallistel en 1978, entre otros, y todos encontraron el mismo resultado). El scaling study ha sido últimamente sometido a varias críticas, algunas obvias, que pasaré por alto (se pueden encontrar en Resnick y Ford, 1991, pp. 45-47).

En el training study se construyen ejercicios didácticos basados en jerarquías para ser usados en actividades didácticas efectivas; dicho brevemente, los estudiantes siguen un curso muy estructurado y programado detalladamente en el cual se analizan todos los peldaños inferiores de la escala, pero no se examinan las habilidades que constituyen el objetivo final. Después de esto, los alumnos son sometidos a un test sobre las tareas finales y a otro test sobre cada una de las habilidades básicas enseñadas en el programa. Entonces, los resultados de los test son analizados en forma particular: se examinan las relaciones entre todas las parejas de habilidades de la jerarquía, las cuales se encuentran unidas mediante flechas, es decir directamente por encima o por debajo.

De tal manera, se asignan puntajes + o – a las cuatro relaciones posibles:

• si hay dos +, uno en el nivel superior y otro en el inferior, significa que ha habido un transfer de la habilidad inferior a la habilidad superior, como preveía la jerarquía;

• si hay dos –, no ha habido transfer, como preveía la jerarquía;

• si hay + en el nivel superior, pero – en el inferior, la jerarquía está contradicha;

• si hay – el nivel superior y + en el inferior, aunque se mantenga cierta concordancia con la jerarquía, puede que haya un defecto en el programa de aprendizaje.

Gagné inició este tipo de training study y fue seguido por otros en los años 60. El training study fue modernizado paulatinamente hasta llegar a situaciones sofisticadas de adiestramiento que pasaré por alto, citando a Resnick y Ford (1991, pp. 47-49), entre otras por las infaltables y usuales críticas. Me gustaría señalar un resultado de Uprichard de 1973 que verificó un hecho al parecer curioso. Mediante el estudio del orden jerárquico de los aprendizajes de la comparación entre cardinales, Uprichard descubrió que, como es obvio, mientras la relación “[…] contiene tantos elementos cuantos contiene [...]” es la base tanto para la relación “[...] contiene más elementos que [...]”, como para la relación “[...] contiene menos elementos que [...]”. Entre estas últimas no existe identidad de nivel jerárquico, como podría aparecer obvio; sin embargo, la relación “menor que” ha demostrado ser más difícil de aprender y de poseer que la otra y por lo tanto parecería aconsejable, en un programa jerárquico, estudiar estas nociones en este orden: igualdad, mayoría, minoría. (En este punto cito un estudio de Donaldson y Balfour de 1968 que mostraba cómo el concepto “más” es más fácil de asimilar que el concepto “menos” y la prueba que se hizo en Palermo en 1974 con el mismo resultado).

Entonces, hay dos categorías de estudiosos: aquellos que creen en las jerarquías del aprendizaje y aquellos que las rechazan. Los que creen pueden usarlas como planos para la enseñanza; es más, hay quienes llegan a usarlas como planos “individuales”, dado que se pueden calibrar sobre las competencias reales de cada niño. A propósito de lo anterior, hago referencia a las pruebas hechas por Resnick, Wang y Kaplan en 1973, quienes idearon un currículo básico para la enseñanza de la aritmética, muy detallado y personalizado, alumno por alumno (se puede ver Resnick e Ford, 1991, pp. 50-54). En cierto sentido, nuestro proyecto Ma.S.E. fue también un tentativo con un vago carácter jerárquico; sin embargo, dada su difusión, no nació como un proyecto personalizado, aunque las aplicaciones concretas mostraron que podría convertirse en tal.

Pueden surgir muchas dudas sobre el concepto mismo de jerarquía, pero, al menos hasta cierto punto, me parece útil para indicar el modo de proceder de manera secuencial y lógica, en lugar de caótico e improvisado. La elección entre una u otra jerarquía está a discreción del profesor, dependiendo de su experiencia, sensibilidad y cultura. Este punto está estrechamente relacionado con la transposición didáctica del Saber hacia el “saber que se quiere enseñar” y el “saber enseñado”, más exactamente en el componente de la ingeniería didáctica (D’Amore, 1999a).

No obstante, no se excluye una elección diametralmente opuesta, la elección de la inmersión total. Tomemos el caso de la didáctica de los problemas que es el que más nos interesa. Se puede crear una escala de problemas matemáticos, del más simple al más complejo.

[¡Atención! ¿Qué quiere decir simple? No es una cuestión menor. En la sección 8.1. se muestra que un viejo criterio de clasificación muy difundido y aceptado en realidad no funciona; se trata del siguiente criterio: entre menos operaciones requiera la solución, más fácil es el problema – entre más operaciones se requieran, más difícil].

Entonces, el niño debe, con su propio ritmo, recorrer la escalera y mientras demuestra sus habilidades para resolver problemas de cierto nivel, accede a problemas de nivel superior. Por el contrario, se puede decidir “sumergir” al niño en un contexto problemático “difícil”, “complejo”, a propósito, por varios motivos: porque los estímulos más fuertes son seguidos por una motivación más activa; porque se quiere provocar la reelaboración de la situación, el desenredo de la madeja; porque se busca suscitar más consciencia, más involucramiento, más ganas; porque se busca una reelaboración a la “inversa” de las etapas de la solución (descubrir «Lo que debo saber antes de [...]») etc. Para ser franco, me parecen dos actitudes, dos “estilos” didácticos significativos y practicables. Tal vez, en el segundo se requiere una mayor competencia por parte del profesor, o quizá una mayor “vigilancia” matemática: en una situación compleja, las respuestas de los niños pueden ser muy diferentes. Me parecen tan significativas y practicables las dos propuestas, que no tendría objeción en practicarlas ambas: mientras la jerarquía se desarrolla gradualmente, a lo largo de la escalera, y aún mejor de manera individual, poco a poco llega la sacudida; una situación problemática compleja saca de lugar el tranquilo andar cotidiano y hace que todo sea puesto de nuevo en discusión, anima a los niños, hace que ellos den pasos de gigante hacia adelante, haciéndolos reflexionar a la “inversa”, precioso resultado en tanto ocasión para el meta conocimiento.

Esta posición “mixta” podría ser útil para responder a las objeciones hechas sobre el tema de las jerarquías, objeciones que afirman que la didáctica basada en jerarquías podría limitar a los estudiantes capaces. De hecho, es obvio que en cualquier grupo normal hay niños que yo defino como “de aprendizaje veloz” (mientras otros, por ejemplo, Terrassier, 1985, los llaman “superdotados”, lo cual, a veces, me parece excesivo). Estos estudiantes podrían muy bien saltarse diversos peldaños de la escalera, o toda la escalera de una vez, o unos aquí y allí, para alcanzar los peldaños superiores; esos alumnos son penalizados por la obligación de recorrer toda la escalera. Las inmersiones totales en problemas complejos podrían ser la ocasión para hacer que dichos estudiantes se sientan satisfechos y comprendidos (además del hecho que la didáctica jerárquica es, no digo totalmente pero sí bastante, personalizada, por lo que estos niños no se verían obligados a respetar los tiempos comunes).

Más allá de la confirmación de las bondades de la inmersión total, me gustaría recordar varias pruebas hechas a partir de los años 60, por Z. Dienes en 1963, por ejemplo. Con tales pruebas se comprobó que, en estos casos, al afrontar y resolver problemas complejos, los niños demostraron haberse apropiado de conceptos de nivel jerárquico inferior, sin haberlos practicado explícitamente con anterioridad. Es más, los mismos Dienes y Golden (1971) llegaron a la hipótesis didáctica conocida como enfoque profundo (deep end): es mejor ir directamente a cierto nivel de complejidad, antes que seguir toda la escala jerárquica. En últimas, si numeramos idealmente los peldaños del 1 al 10, por ejemplo, podemos:

• partir de 1 y luego, poco a poco, pasar al 2, luego al 3 etc., gradualmente pero siempre respetando los ritmos individuales; esto puede ser llamado “didáctica gradual absoluta”;

• partir de 6 y comprobando la adquisición desde el 1 hasta el 5, luego ir al 10 y comprobar desde el 7 hasta el 9; esto puede ser llamado “didáctica de la inmersión total”;

• partir del 1, ir al 2, saltar al 5, comprobar el 3 y el 4, ir al 6, saltar al 8, comprobar el 7, ir al 9 y luego al 10 (o un proceder análogo), respetando, en los pasajes graduales, los ritmos individuales; esto puede ser llamado “didáctica de profundidades mixtas”.

A mi modo de ver, la última elimina al menos algunos de los defectos de las otras dos posiciones extremas. Por ejemplo, las acusaciones que pesan sobre la didáctica de la inmersión total hechas por Resnick, Siegel y Kresh (1971) y por Caruso y Resnick (1972) luego de varios experimentos, podrían muy bien ser superadas por la didáctica mixta anteriormente propuesta. Entre otras, es de resaltar que una didáctica fuertemente estructurada beneficia a los estudiantes con capacidades menores, y que los estudiantes “fuertes” no tienen necesidad de tales estructuras (me refiero al ampliamente citado trabajo de Cronbach y Snow de 1977).

Lo que me asusta es que se llegue, dada la lucha que se presenta siempre entre los dos extremos, a concebir un “arte de la didáctica”: con todo el esfuerzo que ha costado llegar a la aceptación de la cientificidad de la didáctica de la Matemática por parte de unos matemáticos activos en esta, como disciplina autónoma, autosuficiente ¡La hipótesis que todo se reduzca a un arte es espantosa! Sin embargo, el peligro existe (ver Resnick y Ford, 1991, pp. 56-57).

Hay un amplio debate sobre el problema del significado que se puede atribuir a la idea de subdividir un problema complejo en una sucesión de ejercicios elementales.

Para resumir, no es que la subdivisión aumente el porcentaje positivo, sino que el meollo entorno al cual el problema está construido se pone en evidencia.

Veamos un ejemplo que tomo en su formulación original.

Sea A el siguiente texto:

Los 18 alumnos de noveno quieren hacer una excursión escolar de un día de duración de Bolonia a Verona. Para tal fin, deben tener en cuenta los siguientes datos:

1. dos de los alumnos no pueden pagar;

2. sería bueno “invitar” al profesor acompañante;

3. de Bolonia a Verona hay 120 km;

4. un autobús de 20 pasajeros cuesta 200.000 pesos diarios más 500 pesos por kilómetro (incluidos peajes).

¿Cuánto dinero gastaría cada alumno?

Aquí una subdivisión del problema en 3 componentes:

A1. Los 18 alumnos de noveno quieren hacer una excursión escolar de un día de duración de Bolonia a Verona. Ya que dos de los alumnos no pueden pagar y el profesor acompañante es invitado ¿entre cuántos se debe repartir el gasto?

A2. Los 18 alumnos de noveno quieren hacer una excursión escolar de un día de duración de Bolonia a Verona. El autobús de 20 pasajeros cuesta 200.000 pesos diarios más 500 pesos por kilómetro (incluidos peajes). De Bolonia a Verona hay 120 km. ¿Cuánto dinero gastará la clase?

A3. Como A.

La propuesta de A directamente o la sucesión A1, A2, A3 no produjo ninguna variación significativa en IV de primaria. Casi la totalidad de los niños a quienes se les propuso A cometieron el error de evaluar el gasto: 500×120+200000, sin calcular el gasto del regreso. Casi la totalidad de los niños a quienes se les propuso la sucesión Al, A2, A3, cometió el mismo error en la fase A2. De hecho, la gradualidad no aumentó en modo significativo la respuesta positiva. Entonces, se hizo la prueba fraccionando A2 en dos componentes, uno de los cuales preguntaba explícitamente cuántos km se recorrerían ese día. Tal forma explícita favoreció notablemente el porcentaje de respuestas positivas. El meollo conceptual se deshizo y, frente a la pregunta, explícita, muchos niños calcularon (120×2)×500. Por lo tanto, el fraccionamiento de un problema complejo produce una mejoría significativa en el porcentaje de solución solo cuando el meollo conceptual del problema es evidenciado de manera explícita; el fraccionamiento de por sí no produce mejoría de ningún tipo. Es preciso entonces reflexionar sobre la calidad de la elección de los componentes del problema y no solo, de manera acrítica, sobre el fraccionamiento en sí.

El problema anterior fue una oportunidad formidable para un estudio específico sobre el contrato didáctico; las fallas de cálculo de los gastos debidas al regreso, de hecho, fueron puestas en evidencia por parte de los estudiantes entrevistados por falta de una pregunta en ese sentido: «Si querías que calculáramos también el regreso, tenías que decirlo». En varios de mis trabajos sucesivos, he analizado detalladamente esta circunstancia desde el punto de vista de la teoría de las situaciones (por ejemplo, en D’Amore, 1999a, c).

Nota bibliográfica

Para la redacción de esta sección he empleado sobre todo (AA. VV., 1991) [aquí sugiero sobre todo la lectura de los textos de P. Boero, E. Scali, A. Rondini y C. Rubini]; (Bourne, 1966; Boscolo, 1986; Bruner, Goodnow, Austin, 1956; Carroll, 1973; Caruso, Resnick, 1972; Cronbach, Snow, 1977; D’Amore, 1986-93, 1988a, 1988b, 1989, 1991b, 1992a, 1999a, 1999c; D’Amore, Fandiño Pinilla, Sbaragli, 2011; D’Amore, Sbaragli, 2011; Dienes, 1963; Dienes, Golding, 1971; Donaldson, Balfour, 1968; Flavell, 1972; Gagné, 1962; Gagné, Briggs, 1974; Gagné, Mayor, Garstens, Paradise, 1962; Gagné, Paradise, 1961; Gelman, Gallistel, 1978; Guttman, 1944; Handjaras et al., 1983; Palermo, 1974; Resnick, 1973; Resnick, Ford, 1991; Resnick, Siegel, Kresh, 1971).

4 Por pura curiosidad histórica, se trata de una conjetura que el matemático alemán, que vivió en Rusia, Christian Goldbach, propuso a Leonhard Euler en 1742, ya que no lograba ni demostrarla ni refutarla; tampoco lo logró Euler; de hecho, ninguno lo ha logrado hasta ahora.

Los problemas de matemática en la práctica didáctica

Подняться наверх