Читать книгу The Economic Aspect of Geology - C. K. Leith - Страница 22
RELATIVE ABUNDANCE OF THE PRINCIPAL ROCKS OF THE LITHOSPHERE
ОглавлениеJust as elements combine chemically to form minerals, so do minerals combine mechanically, either loosely or compactly, to form rocks. For instance, quartz is a mineral. An aggregation of quartz particles forms sand or sandstone or quartzite. Most rocks contain more than one kind of mineral.
Sedimentary rocks occupy considerable areas of the earth's surface, but they are relatively superficial. It has been estimated that if spread evenly and continuously over the earth, which they are not, they would constitute a shell scarcely a half mile thick.[2] Igneous rocks are relatively more abundant deep below the surface. If the sediments be assumed to be limited to a volume equivalent to a half-mile shell, and the remainder of the rocks be assumed to be igneous, it is evident that to a depth of ten miles 95 per cent of the rocks are igneous. Our actual observation is confined to a shallow superficial zone in which sediments make up at least half of all the rocks.
Igneous rocks can be divided for convenience into two main types: (1) granite and allied rocks, containing a good deal of silica and therefore acid in a chemical sense, and (2) basalt and allied types, containing less silica and more lime, magnesia, iron, soda and potassa, and therefore basic in a chemical sense. The former are light-colored gray and pink rocks while the latter are dark-colored green and gray rocks. Granite and basalt as technically defined are very common igneous rocks—so common that the names are sometimes used to classify igneous rocks in general into two great groups, the granitic and the basaltic. It has been estimated that about 65 per cent of the igneous rocks are of the granitic group and 35 per cent of the basaltic group.
Sedimentary rocks, as already indicated, consist principally of three groups, which for convenience are named shale, sandstone, and limestone. If we approximate the average composition of each group and the average composition of the igneous rocks from which they are ultimately derived, it can be calculated that sedimentary rocks must form in the proportions of 82 per cent shale, 12 per cent sandstone, and 6 per cent limestone. Only this combination of the three sediments will yield an average composition comparable with that of the parent igneous rocks. As actually observed in the field the sandstones and limestones are in relatively higher percentage than is here indicated, suggesting that part of the shales may have been deposited in deep seas where they cannot be observed, and that part may have been so changed or metamorphosed that they are no longer recognized as shales.