Читать книгу The Economic Aspect of Geology - C. K. Leith - Страница 39
MINERAL DEPOSITS AS MAGMATIC SEGREGATIONS IN IGNEOUS ROCKS
ОглавлениеIn this class are included deposits which crystallize within the body of igneous rock, almost, if not quite, simultaneously with the adjacent rock. These deposits form one of the main types of syngenetic deposits.
The titaniferous magnetites constitute a widely distributed but at present commercially unavailable class of iron ores. The magnetite crystals of these deposits interpenetrate with the other constituents of an igneous rock, commonly of a gabbro type, and the deposits themselves are essentially igneous rocks. Their shapes are for the most part irregular, their boundaries ill-defined, and their concentration varying. While their magmatic origin is clear, there is little agreement as to the precise conditions which determined their segregation in the molten rock. There is often a tendency for the ores to follow certain primary sheeted structures in the igneous mass, a fact for which the reason is not obvious.
The Sudbury nickel ores, of Ontario, Canada, the principal source of the world's nickel, lie mainly within and along the lower margin of a great intrusive igneous mass of a basic type called norite, and locally the ores project beyond the margin into adjacent rocks. Their textures and their intercrystallization with the primary minerals of the igneous rock have suggested that they are essentially a part of the norite mass, and that they crystallized during some segregative processes which were effective before the magma had solidified. Near the ores there are likely to be granitic rocks, which, like the ores, seem to be segregations from the norite magma. Locally both the ores and the associated granitic rocks replace the main norite body in such a fashion as to indicate their slightly later crystallization. However, the intimate association of the ores with the primary minerals in the magma, together with their absence from higher parts of the norite and from the extraneous rocks far from the contact, indicate to other investigators that they were not brought in from outside in vagrant solutions which followed the intrusion of the main magma, but that they were segregated within the magma essentially in place. The occurrence of these heavy ores near the base of the norite naturally suggests that they were segregated by sinking to the bottom of the molten magma, but this conclusion implies certain physical conditions of the magma which have not yet been proved. Again the precise nature of the process and the part played in it by aqueous and gaseous solutions are subject to some doubt and controversy. The settlement of this problem awaits the solution of the more general problem of the origin and crystallization of magmas.
In this general class of igneous deposits may be mentioned also diamonds, platinum, chromite, corundum, and other mineral products, although for the formation of commercial ores of many of these substances further concentration by weathering and sedimentation has been required.
Pegmatites are coarsely crystalline acid dike rocks which often accompany a large igneous intrusion and which have obviously crystallized somewhat later than the main igneous mass. They may constitute either sharply delimited dikes or more irregular bodies which grade into the surrounding igneous mass. They have a composition roughly similar to the associated igneous rock, but usually a different proportion of minerals. They are probably the result of the differentiation of the parent magma. The pegmatites are of especial interest to the economic geologist because of the frequency with which they carry commercial minerals, such as the precious stones, mica, feldspar, cassiterite (tin ore), and others. They show a complete gradation from dikes of definitely igneous characteristics to veins consisting largely of quartz in which evidence of igneous origin is not so clear. The pegmatites thus afford a connecting link between ores of direct igneous sources and ores formed as "igneous after-effects," which are discussed in the next paragraph. Aplites are fine-grained acid igneous rocks of somewhat the same composition as the pegmatites and often show the same general relations to ores.