Читать книгу A Guide to the Study of Fishes - David Starr Jordan - Страница 20
CHAPTER XI
INSTINCTS, HABITS, AND ADAPTATIONS
ОглавлениеThe Habits of Fishes.—The habits of fishes can hardly be summarized in any simple mode of classification. In the usual course of fish-life the egg is laid in the early spring, in water shallower than that in which the parents spend their lives. In most cases it is hatched as the water grows warmer. The eggs of the members of the salmon and cod families are, however, mostly hatched in cooling waters. The young fish gathers with others of its species in little schools, feeds on smaller fishes of other species or of its own, grows and changes until maturity, deposits its eggs, and the cycle of life begins again, while the old fish ultimately dies or is devoured.
Irritability of Animals.—All animals, of whatever degree of organization, show in life the quality of irritability or response to external stimulus. Contact with external things produces some effect on each of them, and this effect is something more than the mere mechanical effect on the matter of which the animal is composed. In the one-celled animals the functions of response to external stimulus are not localized. They are the property of any part of the protoplasm of the body. In the higher or many-celled animals each of these functions is specialized and localized. A certain set of cells is set apart for each function, and each organ or series of cells is released from all functions save its own.
Nerve-cells and Fibres.—In the development of the individual animal certain cells from the primitive external layer or ectoblast of the embryo are set apart to preside over the relations of the creature to its environment. These cells are highly specialized, and while some of them are highly sensitive, others are adapted for carrying or transmitting the stimuli received by the sensitive cells, and still others have the function of receiving sense-impressions and of translating them into impulses of motion. The nerve-cells are receivers of impressions. These are gathered together in nerve-masses or ganglia, the largest of these being known as the brain, the ganglia in general being known as nerve-centres. The nerves are of two classes. The one class, called sensory nerves, extends from the skin or other organ of sensation to the nerve-centre. The nerves of the other class, motor nerves, carry impulses to motion.
The Brain, or Sensorium.—The brain or other nerve-centre sits in darkness, surrounded by a bony protecting box. To this main nerve-centre, or sensorium, come the nerves from all parts of the body that have sensation, the external skin as well as the special organs of sight, hearing, taste, and smell. With these come nerves bearing sensations of pain, temperature, muscular effort—all kinds of sensation which the brain can receive. These nerves are the sole sources of knowledge to any animal organism. Whatever idea its brain may contain must be built up through these nerve-impressions. The aggregate of these impressions constitute the world as the organism knows it. All sensation is related to action. If an organism is not to act, it cannot feel, and the intensity of its feeling is related to its power to act.
Reflex Action.—These impressions brought to the brain by the sensory nerves represent in some degree the facts in the animal's environment. They teach something as to its food or its safety. The power of locomotion is characteristic of animals. If they move, their actions must depend on the indications carried to the nerve-centre from the outside; if they feed on living organisms, they must seek their food; if, as in many cases, other living organisms prey on them, they must bestir themselves to escape. The impulse of hunger on the one hand and of fear on the other are elemental. The sensorium receives an impression that food exists in a certain direction. At once an impulse to motion is sent out from it to the muscles necessary to move the body in that direction. In the higher animals these movements are more rapid and more exact. This is because organs of sense, muscles, nerve-fibres, and the nerve-cells are all alike highly specialized. In the fish the sensation is slow, the muscular response sluggish, but the method remains the same. This is simple reflex action, an impulse from the environment carried to the brain and then unconsciously reflected back as motion. The impulse of fear is of the same nature. Reflex action is in general unconscious, but with animals, as with man, it shades by degrees into conscious action, and into volition or action "done on purpose."
Instinct.—Different animals show differences in method or degree of response to external influences. Fishes will pursue their prey, flee from a threatening motion, or disgorge sand or gravel swallowed with their food. Such peculiarities of different forms of life constitute the basis of instinct.
Instinct is automatic obedience to the demands of conditions external to the nervous system. As these conditions vary with each kind of animal, so must the demands vary, and from this arises the great variety actually seen in the instincts of different animals. As the demands of life become complex, so do the instincts. The greater the stress of environment, the more perfect the automatism, for impulses to safe action are necessarily adequate to the duty they have to perform. If the instinct were inadequate, the species would have become extinct. The fact that its individuals persist shows that they are provided with the instincts necessary to that end. Instinct differs from other allied forms of response to external condition in being hereditary, continuous from generation to generation. This sufficiently distinguishes it from reason, but the line between instinct and reason and other forms of reflex action cannot be sharply drawn.
It is not necessary to consider here the question of the origin of instincts. Some writers regard them as "inherited habits," while others, with apparent justice, doubt if mere habits or voluntary actions repeated till they become a "second nature" ever leave a trace upon heredity. Such investigators regard instinct as the natural survival of those methods of automatic response which were most useful to the life of the animal, the individual having less effective methods of reflex action perishing, leaving no posterity.
Classification of Instincts.—The instincts of fishes may be roughly classified as to their relation to the individual into egoistic and altruistic instincts.
Egoistic instincts are those which concern chiefly the individual animal itself. To this class belong the instincts of feeding, those of self-defense and of strife, the instincts of play, the climatic instincts, and environmental instincts, those which direct the animal's mode of life.
Altruistic instincts are those which relate to parenthood and those which are concerned with the mass of individuals of the same species. The latter may be called the social instincts. In the former class, the instincts of parenthood, may be included the instinct of courtship, reproduction, home-making, nest-building, and care for the young. Most of these are feebly developed among fishes.
The instincts of feeding are primitively simple, growing complex through complex conditions. The fish seizes its prey by direct motion, but the conditions of life modify this simple action to a very great degree.
The instinct of self-defense is even more varied in its manifestations. It may show itself either in the impulse to make war on an intruder or in the desire to flee from its enemies. Among carnivorous forms fierceness of demeanor serves at once in attack and in defense.
Herbivorous fishes, as a rule, make little direct resistance to their enemies, depending rather on swiftness of movement, or in some cases on simple insignificance. To the latter cause the abundance of minnows, anchovies, and other small or feeble fishes may be attributed, for all are the prey of carnivorous fishes, which they far exceed in number.
The instincts of courtship relate chiefly to the male, the female being more or less passive. Among many fishes the male makes himself conspicuous in the breeding season, spreading his fins, intensifying his pigmented colors through muscular tension, all this supposedly to attract the attention of the female. That this purpose is actually accomplished by such display is not, however, easily proved. In the little brooks in spring, male minnows can be found with warts on the nose or head, with crimson pigment on the fins, or blue pigment on the back, or jet-black pigment all over the head, or with varied combination of all these. Their instinct is to display all these to the best advantage, even though the conspicuous hues lead to their own destruction.
The movements of many migratory animals are mainly controlled by the impulse to reproduce. Some pelagic fishes, especially flying fishes and fishes allied to the mackerel, swim long distances to a region favorable for a deposition of spawn. Some species are known only in the waters they make their breeding homes, the individuals being scattered through the wide seas at other times. Many fresh-water fishes, as trout, suckers, etc., forsake the large streams in the spring, ascending the small brooks where they can rear their young in greater safety. Still others, known as anadromous fishes, feed and mature in the sea, but ascend the rivers as the impulse of reproduction grows strong. An account of these is given in a subsequent paragraph.
Fig. 118.—Jaws of Nemichthys avocetta. Jordan and Gilbert.
Variability of Instincts.—When we study instincts of animals with care and in detail, we find that their regularity is much less than has been supposed. There is as much variation in regard to instinct among individuals as there is with regard to other characters of the species. Some power of choice is found in almost every operation of instinct. Even the most machine-like instinct shows some degree of adaptability to new conditions. On the other hand, in no animal does reason show entire freedom from automatism or reflex action. "The fundamental identity of instinct with intelligence," says Dr. Charles O. Whitman, "is shown in their dependence upon the same structural mechanism (the brain and nerves) and in their responsive adaptability."
Adaptation to Environment.—In general food-securing structures are connected with the mouth, or, as in the anglers, are hung as lures above it; spines of offense and defense, electric organs, poison-glands, and the like are used in self-protection; the bright nuptial colors and adornments of the breeding season are doubtfully classed as useful in rivalry; the egg-sacs, nests, and other structures or habits may serve to defend the young, while skinny flaps, sand or weed-like markings, and many other features of mimicry serve as concessions to the environment.
Each kind of fishes has its own ways of life, fitted to the conditions of environment. Some species lie on the bottom, flat, as a flounder, or prone on their lower fins, as a darter or a stone-roller. Some swim freely in the depths, others at the surface of the depths. Some leap out of the water from time to time, as the mullet (Mugil) or the tarpon (Tarpon atlanticus).
Fig. 119.—Catalina Flying Fish, Cypsilurus californicus (Cooper). Santa Barbara.
Flight of Fishes.—Some fishes called the flying-fishes sail through the air with a grasshopper-like motion that closely imitates true flight. The long pectoral fins, wing-like in form, cannot, however, be flapped by the fish, the muscles serving only to expand or fold them. These fishes live in the open sea or open channel, swimming in large schools. The small species fly for a few feet only, the large ones for more than an eighth of a mile. These may rise five to twenty feet above the water.
The flight of one of the largest flying fishes (Cypsilurus californicus) has been carefully studied by Dr. Charles H. Gilbert and the writer. The movements of the fish in the water are extremely rapid. The sole motive power is the action under the water of the strong tail. No force can be acquired while the fish is in the air. On rising from the water the movements of the tail are continued until the whole body is out of the water. When the tail is in motion the pectorals seem in a state of rapid vibration. This is not produced by muscular action on the fins themselves. It is the body of the fish which vibrates, the pectorals projecting farthest having the greatest amplitude of movement. While the tail is in the water the ventral fins are folded. When the action of the tail ceases the pectorals and ventrals are spread out wide and held at rest. They are not used as true wings, but are held out firmly, acting as parachutes, enabling the body to skim through the air. When the fish begins to fall the tail touches the water. As soon as it is in the water it begins its motion, and the body with the pectorals again begins to vibrate. The fish may, by skimming the water, regain motion once or twice, but it finally falls into the water with a splash. While in the air it suggests a large dragon-fly. The motion is very swift, at first in a straight line, but is later deflected in a curve, the direction bearing little or no relation to that of the wind. When a vessel passes through a school of these fishes, they spring up before it, moving in all directions, as grasshoppers in a meadow.
Fig. 120.—Sand-darter, Ammocrypta clara (Jordan and Meek). Des Moines River.
Quiescent Fishes.—Some fishes, as the lancelet, lie buried in the sand all their lives. Others, as the sand-darter (Ammocrypta pellucida) and the hinalea (Julis gaimard), bury themselves in the sand at intervals or to escape from their enemies. Some live in the cavities of tunicates or sponges or holothurians or corals or oysters, often passing their whole lives inside the cavity of one animal. Many others hide themselves in the interstices of kelp or seaweeds. Some eels coil themselves in the crevices of rocks or coral masses, striking at their prey like snakes. Some sea-horses cling by their tails to gulfweed or sea-wrack. Many little fishes (Gobiomorus, Carangus, Psenes) cluster under the stinging tentacles of the Portuguese man-of-war or under ordinary jellyfishes. In the tide-pools, whether rock, coral, or mud, in all regions multitudes of little fishes abound. As these localities are neglected by most collectors, they have proved of late years a most prolific source of new species. The tide-pools of Cuba, Key West, Cape Flattery, Sitka, Unalaska, Monterey, San Diego, Mazatlan, Hilo, Kailua and Waiahæ in Hawaii, Apia and Pago-Pago in Samoa, the present writer has found peculiarly rich in rock-loving forms. Even richer are the pools of the promontories of Japan, Hakodate Head, Misaki, Awa, Izu, Waka, and Kagoshima, where a whole new fish fauna unknown to collectors in markets and sandy bays has been brought to light. Some of these rockfishes are left buried in the rock weeds as the tide flows, lying quietly until it returns. Others cling to the rocks by ventral suckers, while still others depend for their safety on their powers of leaping or on their quickness of their movements in the water. Those of the latter class are often brilliantly colored, but the others mimic closely the algæ or the rocks. Some fishes live in the sea only, some prefer brackish-water. Some are found only in the rivers, and a few pass more or less indiscriminately from one kind of water to another.
Fig. 121.—Pearl-fish, Fierasfer acus (Linnæus), issuing from a Holothurian. Coast of Italy. (After Emery.)
Fig. 122.—Portuguese Man-of-war Fish, Gobiomorus gronovii. Family Stromateidæ.
Migratory Fishes.—The movements of migratory fishes are mainly controlled by the impulse of reproduction. Some pelagic fishes, especially those of the mackerel and flying-fish families, swim long distances to a region favorable for the deposition of spawn. Others pursue for equal distances the schools of menhaden or other fishes which serve as their prey. Some species are known mainly in the waters they make their breeding homes, as in Cuba, Southern California, Hawaii, or Japan, the individuals being scattered at other times through the wide seas.
Anadromous Fishes.—Many fresh-water fishes, as trout and suckers, forsake the large streams in the spring, ascending the small brooks where their young can be reared in greater safety. Still others, known as anadromous fishes, feed and mature in the sea, but ascend the rivers as the impulse of reproduction grows strong. Among such fishes are the salmon, shad, alewife, sturgeon, and striped bass in American waters. The most remarkable case of the anadromous instinct is found in the king salmon or quinnat (Oncorhynchus tschawytscha) of the Pacific Coast. This great fish spawns in November, at the age of four years and an average weight of twenty-two pounds. In the Columbia River it begins running with the spring freshets in March and April. It spends the whole summer, without feeding, in the ascent of the river. By autumn the individuals have reached the mountain streams of Idaho, greatly changed in appearance, discolored, worn, and distorted. The male is humpbacked, with sunken scales, and greatly enlarged, hooked, bent, or twisted jaws, with enlarged dog-like teeth. On reaching the spawning beds, which may be a thousand miles from the sea in the Columbia, over two thousand in the Yukon, the female deposits her eggs in the gravel of some shallow brook. The male covers them and scrapes the gravel over them. The female salmon does as much as the male in covering the eggs. Then both male and female drift tail foremost helplessly down the stream; none, so far as certainly known, ever survive the reproductive act. The same habits are found in the five other species of salmon in the Pacific, but in most cases the individuals do not start so early nor run so far. The blue-back salmon or redfish, however, does not fall far short in these regards. The salmon of the Atlantic has a similar habit, but the distance traveled is everywhere much less, and most of the hook-jawed males drop down to the sea and survive to repeat the acts of reproduction.
Fig. 123.—Tide-pools of Misaki. The Misaki Biological Station, from the north side.
Catadromous fishes, as the true eel (Anguilla), reverse this order, feeding in the rivers and brackish estuaries, apparently finding their usual spawning-ground in the sea.
Fig. 124.—Squaw-fish, Ptychocheilus oregonensis (Richardson). Columbia River.
Pugnacity of Fishes.—Some fishes are very pugnacious, always ready for a quarrel with their own kind. The sticklebacks show this disposition, especially the males. In Hawaii the natives take advantage of this trait to catch the Uu (Myripristis murdjan), a bright crimson-colored fish found in those waters. The species lives in crevices in lava rocks. Catching a live one, the fishermen suspend it by a string in front of the rocks. It remains there with spread fins and flashing scales, and the others come out to fight it, when all are drawn to the surface by a concealed net. Another decoy is substituted and the trick is repeated until the showy and quarrelsome fishes are all secured.
In Siam the fighting-fish (Betta pugnax) is widely noted. The following account of this fish is given by Cantor:11
"When the fish is in a state of quiet, its dull colors present nothing remarkable; but if two be brought together, or if one sees its own image in a looking-glass, the little creature becomes suddenly excited, the raised fins and the whole body shine with metallic colors of dazzling beauty, while the projected gill membrane, waving like a black frill round the throat, adds something of grotesqueness to the general appearance. In this state it makes repeated darts at its real or reflected antagonist. But both, when taken out of each other's sight, instantly become quiet. The fishes were kept in glasses of water, fed with larvæ of mosquitoes, and had thus lived for many months. The Siamese are as infatuated with the combats of these fish as the Malays are with their cock-fights, and stake on the issue considerable sums, and sometimes their own persons and families. The license to exhibit fish-fights is farmed, and brings a considerable annual revenue to the king of Siam. The species abounds in the rivulets at the foot of the hills of Penang. The inhabitants name it 'Pla-kat,' or the 'fighting-fish'; but the kind kept especially for fighting is an artificial variety cultivated for the purpose."
A related species is the equally famous tree-climber of India (Anabas scandens). In 1797 Lieutenant Daldorf describes his capture of an Anabas, five feet above the water, on the bark of a palm-tree. In the effort to do this, the fish held on to the bark by its preopercular spines, bent its tail, inserted its anal spines, then pushing forward, repeated the operation.
Fear and Anger in Fishes.—From an interesting paper by Surgeon Francis Day12 on Fear and Anger in Fishes we may make the following extracts, slightly condensed and with a few slight corrections in nomenclature. The paper is written in amplification of another by Rev. S. J. Whitmee, describing the behavior of aquarium fishes in Samoa.
Fig. 125.—Squaw-fish, Ptychocheilus grandis Agassiz. Running up a stream to spawn, the high water, after a rain, falling, leaves the fishes stranded. Kelsey Creek, Clear Lake, California, April 29, 1899. (Photograph by O. E. Meddaugh.)—Page 164.
The means of expression in animals adverted to by Mr. Darwin (excluding those of the ears, which would be out of place in fishes) are: sounds, vocally or otherwise produced; the erection of dermal appendages under the influence of anger or terror, which last would be analogous to the erection of scales and fin-rays among fishes. Regarding special expressions, as those of joy, pain, astonishment, etc., we could hardly expect such so well marked in fishes as in some of the higher animals, in which the play of the features often affords us an insight into their internal emotions. Eyes13 destitute of movable eyelids, cheeks covered with scales, or the head enveloped in dermal plates, can scarcely mantle into a smile or expand into a broad grin. We possess, however, one very distinct expression in fishes which is absent or but slightly developed in most of the higher animals, namely, change of color. All are aware that when a fish sickens, its brilliant colors fade, but less so how its color may be augmented by anger, and a loss of it be occasioned by depression, the result of being vanquished by a foe. Some forms also emit sounds when actuated by terror, and perhaps in times of anger; but of this last I possess no decided proofs.
Similar to the expression of anger in Betta is that of the three-spined stickleback (Gasterosteus aculeatus).14 After a fight between two examples, according to Couch, "a strange alteration takes place almost immediately in the defeated party: his gallant bearing forsakes him; his gay colors fade away; he becomes again speckled and ugly; and he hides his disgrace amongst his peaceable companions who occupy together that part of the tub which their tyrants have not taken possession of; he is, moreover, for some time the constant object of his conqueror's persecution."
Fear is shown by fish in many ways. There is not an angler unacquainted with the natural timidity of fishes, nor a keeper in charge of a salmon-pass, who does not know how easy it is for poachers to deter the salmon from venturing along the path raised expressly for his use.
Among the coral reefs of the Andaman Islands I found the little Chromis lepisurus abundant. As soon as the water was splashed they appeared to retire for safety to the branching coral, where no large fish could follow them; so frightened did they become that on an Andamanese diving from the side of the boat, they at once sought shelter in the coral, in which they remained until it was removed from the sea. In Burma I observed, in 1869, that when weirs are not allowed to stretch across the rivers (which would impede navigation), the open side as far as the bank is studded with reeds; these, as the water passes over them, cause vibration, and occasion a curious sound alarming the fishes, which, crossing to the weired side of the river, become captured.
Hooker, alluding to gulls, terns, wild geese, and pelicans in the Ganges Valley, observes: "These birds congregate by the sides of pools and beat the water with violence, so as to scare the fish, which then become an easy prey—a fact which was, I believe, first indicated by Pallas during his residence on the banks of the Caspian Sea."15 Fishes, under the influence of terror, dash about with their fins expanded, and often run into places which must destroy them. Thus droves and droves of sardines in the east, impelled by the terror of pursuing sharks, bonitos, and other voracious fishes, frequently throw themselves on the shores in enormous quantities. Friar Odoric, who visited Ceylon about 1320, says: "There are fishes in those seas which come swimming towards the said country in such abundance, that for a great distance into the sea nothing can be seen but the backs of fishes, which, casting themselves on the shore, do suffer men for the space of three days to come, and to take as many of them as they please, and then they return again into the sea."16
Pennant tells us that the river bullhead (Cottus gobio) "deposits its spawn in a hole it forms in the gravel, and quits it with great reluctance." General Hardwicke tells how the gouramy (Osphromenus gouramy), in the Mauritius, forms a nest amongst the herbage growing in the shallow water in the sides of tanks. Here the parent continues to watch the place with the greatest vigilance, driving away any interloping fish. The amphibious walking-fish of Mysore (Ophiocephalus striatus) appears to make a nest very similar to that of the gouramy, and over it the male keeps guard; but should he be killed or captured, the vacant post is filled by his partner. (Colonel Puckle.) When very young the fishes keep with and are defended by their parents, but so soon as they are sufficiently strong to capture prey for themselves they are driven away to seek their own subsistence. (See Fishes of India, p. 362.) But it is not only these monogamous amphibious fishes which show an affection for their eggs and also for their fry, but even the little Etroplus maculatus has been observed to be equally fond of its ova. "The eggs are not very numerous and are deposited in the mud at the bottom of the stream, and, when hatched, both parents guard the young for many days, vigorously attacking any large fish that passes near them."17
Although the proceedings of the members of the marine and estuary genus of sea-cat (Tachysurus) and its allies show not quite so distinctly signs of affection, still it must be a well-developed instinct which induces the male to carry about the eggs in its mouth until hatched, and to remove them in this manner when danger is imminent. I have taken the ova just ready for the young to come forth out of the mouth and fauces of the parent (male) fish; and in every animal dissected there was no trace of food in the intestinal tract.
Calling the Fishes.—At many temples in India fishes are called to receive food by means of ringing bells or musical sounds. Carew, in Cornwall, is said to have called the gray mullet together by making a noise like chopping with a cleaver. Lacépède relates that some fishes, which had been kept in the basins out of the Tuileries for more than a century, would come when called by their names, and that in many parts of Germany trout, carp, and tench are summoned to their food by the sound of a bell. These instances are mostly due to the fishes having learned by experience that on the hearing certain sounds they may expect food. But Lacépède mentions that some were able to distinguish their individual names; and the same occurs in India. Lieutenant Connolly18 remarked upon seeing numerous fishes coming to the ghaut at Sidhnath to be fed when called; and on "expressing our admiration of the size of the fish, 'Wait,' said a bystander, 'until you have seen Raghu.' The Brahmin called out his name in a peculiar tone of voice; but he would not hear. I threw in handful after handful of ottah (flour) with the same success, and was just leaving the ghaut, despairing and doubting, when a loud plunge startled me. I thought somebody had jumped off the bastion of the ghaut into the river, but was soon undeceived by the general shout of 'Raghu, raghu,' and by the fishes, large and small, darting away in every direction. Raghu made two or three plunges, but was so quick in his motions that I was unable to guess at his species." [It may be said in relation to these stories quoted by Dr. Day, that they probably belong to the mythology of fishes. It is very doubtful if fishes are able to make any such discrimination among sounds in the air.]
Sounds of Fishes.—Pallegoix states that in Siam the dog's-tongue (Cynoglossus) is a kind of sole; it attaches itself to the bottom of boats, and makes a sonorous noise, which is more musical when several are stuck to the same boat and act in concert (vol. i. p. 193). These noises can scarcely be due to anger or fear. Sir J. Bowring (vol. ii. p. 276) also remarks upon having heard this fish, "which sticks to the bottoms of the boats, and produces a sound something like that of a jew's-harp struck slowly, though sometimes it increases in loudness, so as to resemble the full tones and sound of an organ. My men have pointed me out a fish about four inches long as the author of the music."
Some years since, at Madras, I (Dr. Day) obtained several specimens of a fresh-water Siluroid fish (Macrones vittatus) which is termed the "fiddler" in Mysore. I touched one which was on the wet ground, at which it appeared to become very irate, erecting its dorsal fin, making a noise resembling the buzzing of a bee. Having put some small carp into an aquarium containing one of these fishes, it rushed at a small example, seized it by the middle of its back, and shook it like a dog killing a rat; at this time its barbels were stiffened out laterally like a cat's whiskers.
Many fish when captured make noises, perhaps due to terror. Thus the Carangus hippos, Tetraodon, and others grunt like a hog. Darwin (Nat. Journ., vol. vii) remarks on a catfish found in the Rio Paraná, and called the armado, which is remarkable for a harsh grating noise when caught by hook and line; this noise can be distinctly heard when the fish is beneath the water.
The cuckoo-gurnard (Trigla pini) and the maigre (Pseudosciæna aquila) utter sounds when taken out of the water; and herrings, when the net has been drawn over them, have been observed to do the same: "this effect has been attributed to an escape of air from the air-bladder; but no air-bladder exists in the Cottus, which makes a similar noise."
The lesser weaver (Trachinus) buries itself in the loose soil at the bottom of the water, leaving only its head exposed, and awaits its prey. If touched, it strikes upwards or sideways; and Pennant says it directs its blows with as much judgment as a fighting-cock. (Yarrell, vol. i. p. 26.) Fishermen assert that wounds from its anterior dorsal spines are more venomous than those caused by the spines on its gill-covers.
As regards fighting, I should suppose that, unless some portion of the body is peculiarly adapted for this purpose, as the rostrum of the swordfish, or the spine on the side of the tail in the lancet-fishes, we must look chiefly to the armature or covering of the jaws for weapons of offense.
Lurking Fishes.—Mr. Whitmee supposes that most carnivorous fish capture their prey by outswimming them; but to this there are numerous exceptions; the angler or fishing-frog (Lophis piscatorius), "while crouching close to the ground, by the action of its ventral and pectoral fins stirs up the sand and mud; hidden by the obscurity thus produced, it elevates its anterior dorsal spines, moves them in various directions by way of attraction as a bait, and the small fishes, approaching either to examine or to seize them, immediately become the prey of the fisher." (Yarrell.) In India we find a fresh-water Siluroid (Chaca lophioides) which "conceals itself among the mud, from which, by its lurid appearance and a number of loose filamentous substances on its skin, it is scarcely distinguishable; and with an immense open mouth it is ready to seize any small prey that is passing along." (Ham. Buchanan.) In March, 1868, I obtained a fine example of Ichthyscopus lebeck (Fishes of India, p. 261), which I placed in water having a bed of mud; into this it rapidly worked itself, first depressing one side and then another, until only the top of its head and mouth remained above the mud, whilst a constant current was kept up through its gills. It made a noise, half snapping and half croaking, when removed from its native element.
In the Royal Westminster Aquarium, says Dr. Day, is a live example of the electric eel (Electrophorus electricus) which has in its electric organs the means of showing when it is affected by anger or terror. Some consider this curious property is for protection against alligators: it is certainly used against fishes for the purpose of obtaining food; but when we remember how, when the Indians drive in horses and mules to the waters infested by the eels, they immediately attack them, we must admit that such cannot be for the purpose of preying upon them, but is due to anger or terror at being disturbed. (Day.)
Carrying Eggs in the Mouth.—Many catfishes (Siluridæ) carry their eggs in the mouth until hatched. The first and most complete account of this habit of catfishes is that by Dr. Jeffries Wyman, which he communicated to the Boston Society of Natural History at its meeting on September 15, 1857. In 1859, in a paper entitled "On Some Unusual Modes of Gestation," Dr. Wyman published a full account of his observations as follows, here quoted from a paper on Surinam fishes by Evermann and Goldsborough:
"Among the Siluroid fishes of Guiana there are several species which, at certain seasons of the year, have their mouths and branchial cavities filled either with eggs or young, and, as is believed, for the purpose of incubation. My attention was first called to this singular habit by the late Dr. Francis W. Cragin, formerly United States consul at Paramaribo, Surinam. In a letter dated August, 1854, he says:
"'The eggs you will receive are from another fish. The different fishermen have repeatedly assured me that these eggs in their nearly mature state are carried in the mouths of the parent till the young are relieved by the bursting of the sac. Do you either know or believe this to be so, and, if possible, where are the eggs conceived and how do they get into the mouth?'
"In the month of April, 1857, on visiting the market of Paramaribo, I found that this statement, which at first seemed to be very improbable, was correct as to the existence of eggs in the mouths of several species of fish. In a tray of fish which a negro woman offered for sale, I found the mouths of several filled with either eggs or young, and subsequently an abundance of opportunities occurred for repeating the observation. The kinds most commonly known to the colonists, especially to the negroes, are jara-bakka, njinge-njinge, kœpra, makrede, and one or two others, all belonging either to the genus Bagrus or one nearly allied to it. The first two are quite common in the market, and I have seen many specimens of them; for the last two I have the authority of negro fishermen, but have never seen them myself. The eggs in my collection are of three different sizes, indicating so many species, one of the three having been brought to me without the fish from which they were taken.
"The eggs become quite large before they leave the ovaries, and are arranged in three zones corresponding to three successive broods, and probably to be discharged in three successive years; the mature eggs of a jara-bakka 18 inches long measure three-fourths of an inch in diameter; those of the second zone, one-fourth; and those of the third are very minute, about one-sixteenth of an inch.
"A careful examination of eight specimens of njinge-njinge about 9 inches long gave the following results:
"The eggs in all instances were carried in the mouths of the males. This protection, or gestation of the eggs by the males, corresponds with what has been long noticed with regard to other fishes, as, for example, Syngnathus, where the marsupial pouch for the eggs or young is found in the males only, and Gasterosteus, where the male constructs the nest and protects the eggs during incubation from the voracity of the females.
"In some individuals the eggs had been recently laid, in others they were hatched and the fœtus had grown at the expense of some other food than that derived from the yolk, as this last was not proportionally diminished in size, and the fœtus weighed more than the undeveloped egg. The number of eggs contained in the mouth was between twenty and thirty. The mouth and branchial cavity were very much distended, rounding out and distorting the whole hyoid and branchiostegal region. Some of the eggs even partially protruded from the mouth. The ova were not bruised or torn as if they had been bitten or forcibly held by the teeth. In many instances the fœtuses were still alive, though the parent had been dead for many hours.
"No young or eggs were found in the stomach, although the mouth was crammed to its fullest capacity.
"The above observations apply to njinge-njinge. With regard to jarra-bakka, I had but few opportunities for dissection, but in several instances the same conditions of the eggs were noticed as stated above; and in one instance, besides some nearly mature fœtuses contained in the mouth, two or three were squeezed apparently from the stomach, but not bearing any marks of violence or of the action of the gastric fluid. It is probable that these found their way into that last cavity after death, in consequence of the relaxation of the sphincter which separates the cavities of the mouth and the stomach. These facts lead to the conclusion that this is a mouth gestation, as the eggs are found there in all stages of development, and even for some time after they are hatched.
"The question will be very naturally asked, how under such circumstances these fishes are able to secure and swallow their food. I have made no observations bearing upon such a question. Unless the food consists of very minute particles it would seem necessary that during the time of feeding the eggs should be disgorged. If this supposition be correct, it would give a very probable explanation of the only fact which might be considered at variance with the conclusion stated above, viz., that we have in these fishes a mouth gestation. In the mass of eggs with which the mouth is filled I have occasionally found the eggs, rarely more than one or two, of another species. The only way in which their presence may be accounted for, it seems to me, is by the supposition that while feeding the eggs are disgorged, and as these fishes are gregarious in their habits, when the ova are recovered the stray eggs of another species may be introduced into the mouth among those which naturally belong there."
One of the earliest accounts of this curious habit which we have seen is that by Dr. Günther, referring to specimens of Tachysurus fissus from Cayenne received from Prof. R. Owen:
"These specimens having had the cavity of the mouth and of the gills extended in an extraordinary manner, I was induced to examine the cause of it, when, to my great surprise, I found them filled with about twenty eggs, rather larger than an ordinary pea, perfectly uninjured, and with the embryos in a forward state of development. The specimens are males, from 6 to 7 inches long, and in each the stomach was almost empty.
"Although the eggs might have been put into the mouth of the fish by their captor, this does not appear probable. On the other hand, it is a well-known fact that the American Siluroids take care of their progeny in various ways; and I have no doubt that in this species and in its allies the males carry the eggs in their mouths, depositing them in places of safety and removing them when they fear the approach of danger or disturbance."
The Unsymmetrical Eyes of Flounders.—In the two great families of flounders and soles the head is unsymmetrically formed, the cranium being twisted and both eyes placed on the same side. The body is strongly compressed, and the side possessing the eyes is uppermost in all the actions of the fish. This upper side, whether right or left, is colored, while the eyeless side is white or very nearly so.
It is well known that in the very young flounder the body rests upright in the water. After a little there is a tendency to turn to one side and the lower eye begins its migration to the other side, the interorbital bones or part of them moving before it. In most flounders the eye seems to move over the surface of the head, before the dorsal fin, or across the axil of its first ray. In the tropical genus Platophrys the movement of the eye is most easily followed, as the species reach a larger size than do most flounders before the change takes place. The larva, while symmetrical, is in all cases transparent.
Fig. 126.
Fig. 127.
Figs. 126, 127.—Larval stages of Platophrys podas, a flounder of the Mediterranean, showing the migration of the eye. (After Emery.)
In a recent study of the migration of the eye in the winter flounder (Pseudopleuronectes americanus) Mr. Stephen R. Williams reaches the following conclusions:
1. The young of Limanda ferruginea (the rusty dab) are probably in the larval stage at the same time as those of Pseudopleuronectes americanus (the winter flounder).
2. The recently hatched fish are symmetrical, except for the relative positions of the two optic nerves.
3. The first observed occurrence in preparation for metamorphosis in P. americanus is the rapid resorption of the part of the supraorbital cartilage bar which lies in the path of the eye.
4. Correlated with this is an increase in distance between the eyes and the brain, caused by the growth of the facial cartilages.
5. The migrating eye moves through an arc of about 120 degrees.
Fig. 128.—Platophrys lunatus (Linnæus), the Wide-eyed Flounder. Family Pleuronectidæ. Cuba. (From nature by Mrs. H. C. Nash.)
6. The greater part of this rotation (three-fourths of it in P. americanus) is a rapid process, taking not more than three days.
7. The anterior ethmoidal region is not so strongly influenced by the twisting as the ocular region.
Fig. 129.—Young Flounder, just hatched, with symmetrical eyes. (After S. R. Williams.)
8. The location of the olfactory nerves (in the adult) shows that the morphological midline follows the interorbital septum.
9. The cartilage mass lying in the front part of the orbit of the adult eye is a separate anterior structure in the larva.
10. With unimportant differences, the process of metamorphosis in the sinistral fish is parallel to that in the dextral fish.
11. The original location of the eye is indicated in the adult by the direction first taken, as they leave the brain, by those cranial nerves having to do with the transposed eye.
12. The only well-marked asymmetry in the adult brain is due to the much larger size of the olfactory nerve and lobe of the ocular side.
13. There is a perfect chiasma.
14. The optic nerve of the migrating eye is always anterior to that of the other eye.
Fig. 130.—Larval Flounder, Pseudopleuronectes americanus. (After S. R. Williams.)
Fig. 131.—Larval Flounder, Pseudopleuronectes americanus. (After S. R. Williams.)
"The why of the peculiar metamorphosis of the Pleuronectidæ is an unsolved problem. The presence or absence of a swim-bladder can have nothing to do with the change of habit of the young flatfish, for P. americanus must lose its air-bladder before metamorphosis begins, since sections showed no evidence of it, whereas in Lophopsetta maculata, 'the windowpane flounder,' the air-sac can often be seen by the naked eye up to the time when the fish assumes the adult coloration, and long after it has assumed the adult form.
"Cunningham has suggested that the weight of the fish acting upon the lower eye after the turning would press it toward the upper side out of the way. But in all probability the planktonic larva rests on the sea-bottom little if at all before metamorphosing. Those taken by Mr. Williams into the laboratory showed in resting no preference for either side until the eye was near the midline.
"The fact that the change in all fishes is repeated during the development of each individual fish has been used to support the proposition that the flatfishes as a family are a comparatively recent product. They are, on the other hand, comparatively ancient. According to Zittel flatfishes of species referable to genera living at present, Rhombus (Bothus) and Solea, are found in the Eocene deposits. These two genera are notable in that Bothus is one of the least and Solea the most unsymmetrical of the Pleuronectidæ.
Fig. 132.—Face view of recently hatched Flounder. (After S. R. Williams.)
"The degree of asymmetry can be correlated with the habit of the animal. Those fishes, such as the sole and shore-dwelling flounders, which keep to the bottom are the most twisted representatives of the family, while the more freely swimming forms, like the sand-dab, summer flounder, and halibut, are more nearly symmetrical. Asymmetry must be of more advantage to those fishes which grub in the mud for their food than to those which capture other fishes; of the latter those which move with the greatest freedom are the most symmetrical.
"This deviation from the bilateral condition must have come about either as a 'sport' or by gradual modification of the adults. If by the latter method—the change proving to be advantageous—selection favored its appearing earlier and earlier in ontogeny, until it occurred in the stages of planktonic life. Metamorphosis at a stage earlier than this would be a distinct disadvantage, because of the lack of the customary planktonic food at the sea-bottom. At present some forms of selection are probably continually at work fixing the limit of the period of metamorphosis by the removal of those individuals which attempt the transformation at unsuitable epochs; for instance, at the time of hatching. That there are such individuals is shown by Fullarton, who figures a fish just hatched 'anticipating the twisting and subsequent unequal development exhibited by the head of Pleuronectids.' Those larvæ which remain pelagic until better able to compete at the sea-bottom become the adults which fix the time of metamorphosis on their progeny." (S. R. Williams.)
So far as known to the writer, the metamorphosis of flounders always occurs while the individual is still translucent and swimming at the surface of the sea before sinking to the bottom.