Читать книгу A Guide to the Study of Fishes - David Starr Jordan - Страница 25

CHAPTER XIV
THE GEOGRAPHICAL DISTRIBUTION OF FISHES

Оглавление

Table of Contents

Zoogeography.—Under the head of distribution we consider the facts of the actual location of species of organisms on the surface of the earth and the laws by which their location is governed. This constitutes the subject-matter of the science of zoogeography. In physical geography we may prepare maps of the earth or of any part of it, these bringing to prominence the physical features of its surface. Such maps show here a sea, there a plateau, here a mountain chain, there a desert, a prairie, a peninsula, or an island. In political geography the maps show their physical features of the earth as related to the people who inhabit them and the states or powers which receive or claim their allegiance. In zoogeography the realms of the earth are considered in relation to the species or tribes of animals which inhabit them. Thus series of maps could be drawn representing those parts of North America in which catfishes or trout or sunfishes are found in the streams. In like manner the distribution of any particular fish as the muskallonge or the yellow perch could be shown on the map. The details of such a map are very instructive, and their consideration at once raises a series of questions as to the cause behind each fact. In science it must be supposed that no fact is arbitrary or meaningless. In the case of fishes the details of the method of diffusion of species afford matters of deep interest. These are considered in a subsequent chapter.

The dispersion of animals may be described as a matter of space and time, the movement being continuous but modified by barriers and other conditions of environment. The tendency of recent studies in zoogeography has been to consider the facts of present distribution as the result of conditions in the past, thus correlating our present knowledge with the past relations of land and water as shown through paleontology. Dr. A. E. Ortmann well observes that "Any division of the earth's surface into zoogeographical regions which starts exclusively from the present distribution of animals without considering its origin must always be unsatisfactory." We must therefore consider the coast-lines and barriers of Tertiary and earlier times as well as those of to-day to understand the present distribution of fishes.

General Laws of Distribution.—The general laws governing the distribution of all animals are reducible to three very simple propositions.

Each species of animal is found in every part of the earth having conditions suitable for its maintenance, unless

(a) Its individuals have been unable to reach this region through barriers of some sort; or,

(b) Having reached it, the species is unable to maintain itself, through lack of capacity for adaptation, through severity of competition with other forms, or through destructive conditions of environment; or else,

(c) Having entered and maintained itself, it has become so altered in the process of adaptation as to become a species distinct from the original type.

Species Absent through Barriers.—The absence from the Japanese fauna of most European or American species comes under the first head. The pike has never reached the Japanese lakes, though the shade of the-lotus leaf in the many clear ponds would suit its habits exactly. The grunt22 and porgies23 of our West Indian waters have failed to cross the ocean and therefore have no descendants in Europe or Asia.

Species Absent through Failure to Maintain Foothold.—Of species under (b), those who have crossed the seas and not found lodgement, we have, in the nature of things, no record. Of the existence of multitudes of estrays we have abundant evidence. In the Gulf Stream off Cape Cod are every year taken many young fishes belonging to species at home in the Bahamas and which find no permanent place in the New England fauna. In like fashion, young fishes from the tropics drift northward in the Kuro Shiwo to the coasts of Japan, but never finding a permanent breeding-place and never joining the ranks of the Japanese fishes. But to this there have been, and will be, occasional exceptions. Now and then one among thousands finds permanent lodgement, and by such means a species from another region will be added to the fauna. The rest disappear and leave no trace. A knowledge of these currents and their influence is eventual to any detailed study of the dispersion of fishes.

The occurrence of the young of many shore fishes of the Hawaiian Islands as drifting plankton at a considerable distance from the shores has been lately discovered by Dr. Gilbert. Each island is, in a sense, a "sphere of influence," affecting the fauna of neighboring regions.

Species Changed through Natural Selection.—In the third class, that of species changed in the process of adaptation, most insular forms belong. As a matter of fact, at some time or another almost every species must be in this category, for isolation is a source of the most potent elements in the initiation and intensification of the minor differences which separate related species. It is not the preservation of the most useful features, but of those which actually existed in the ancestral individuals, which distinguish such species. Natural selection must include not only the process of the survival of the fittest, but also the results of the survival of the existing. This means the preservation through heredity of the traits not of the species alone, but those of the actual individuals set apart to be the first in the line of descent in a new environment. In hosts of cases the persistence of characters rests not on any special usefulness or fitness, but on the fact that individuals possessing these characters have, at one time or another, invaded a certain area and populated it. The principle of utility explains survivals among competing structures. It rarely accounts for qualities associated with geographical distribution.

Extinction of Species.—The extinction of species may be noted here in connection with their extension of range. Prof. Herbert Osborn has recognized five different types of elimination.

1. That extinction which comes from modification or progressive evolution, a relegation to the past as the result of a transmutation into more advanced forms. 2. Extinction from changes of physical environment which outrun the powers of adaptation. 3. The extinction which results from competition. 4. The extinction from extreme specialization and limitation to special conditions the loss of which means extinction. 5. Extinction as a result of exhaustion. As an illustration of No. 1, we may take almost any species which has a cognate species on the further side of some barrier or in the tertiary seas. Thus the trout of the Twin Lakes in Colorado has acquired its present characters in the place of those brought into the lake by its actual ancestors. No. 2 is illustrated by the disappearance of East Indian types (Zanclus, Platax, Toxotes, etc.) in Italy at the end of the Eocene, perhaps for climatic reasons. Extinction through competition is shown in the gradual disappearance of the Sacramento perch (Archoplitis interruptus) after the invasion of the river by catfish and carp. From extreme specialization certain forms have doubtless disappeared, but no certain case of this kind has been pointed out among fishes, unless this be the cause of the disappearance of the Devonian mailed Ostracophores and Arthrodires. It is not likely that any group of fishes has perished through exhaustion of the stock of vigor.

Barriers Checking Movement of Marine Fishes.—The limits of the distribution of individual species or genera must be found in some sort of barrier, past or present. The chief barriers which limit marine fishes are the presence of land, the presence of great oceans, the differences of temperature arising from differences in latitude, the nature of the sea bottom, and the direction of oceanic currents. That which is a barrier to one species may be an agent in distribution to another. The common shore fishes would perish in deep waters almost as surely as on land, while the open Pacific is a broad highway to the albacore or the swordfish.

Again, that which is a barrier to rapid distribution may become an agent in the slow extension of the range of a species. The great continent of Asia is undoubtedly one of the greatest of barriers to the wide movement of species of fish, yet its long shore-line enables species to creep, as it were, from bay to bay, or from rock to rock, till, in many cases, the same species is found in the Red Sea and in the tide-pools or sand-reaches of Japan. In the North Pacific, the presence of a range of half-submerged volcanoes, known as the Aleutian and the Kurile Islands, has greatly aided the slow movement of the fishes of the tide-pools and the kelp. To a school of mackerel or of flying-fishes these rough islands with their narrow channels might form an insuperable barrier.


Fig. 173.—Japanese filefish, Rudarius ercodes Jordan and Snyder. Wakanoura, Japan. Family Monacanthidæ.

Temperature the Central Fact in Distribution.—It has long been recognized that the matter of temperature is the central fact in all problems of geographical distribution. Few species in any group freely cross the frost-line, and except as borne by oceanic currents, not many extend their range far into waters colder than those in which the species is distinctively at home. Knowing the average temperature of the water in a given region we know in general the types of fishes which must inhabit it. It is the similarity in temperature and physical conditions which chiefly explains the resemblance of the Japanese fauna to that of the Mediterranean or the Antilles. This fact alone must explain the resemblance of the Arctic and Antarctic faunæ, there being in no case a barrier in the sea that may not some time be crossed. Like forms lodge in like places.

Agency of Ocean Currents.—We may consider again for a moment the movements of the great currents in the Pacific as agencies in the distribution of species.

A great current sets to the eastward, crossing the ocean just south of the equator. It extends past Samoa and passes on nearly to the coast of Mexico, touching the Galapagos Islands, Clipperton Island, and especially the Revillagigedos. This may account for the number of Polynesian species found on these islands, about which they are freely mixed with immigrants from the mainland of Mexico.

From the Revillagigedos24 the current moves northward and westward, passing the Hawaiian Islands and thence onward to the Ladrones. The absence in Hawaii of most of the characteristic fishes of Polynesia and Micronesia may be in part due to the long detour made by these currents, as the conditions of life in these groups of islands are not very different. Northeast of Hawaii is a great spiral current, moving with the hands of the watch, forming what is called Fleurieu's Whirlpool. This does not reach the coast of California. This fact may help to account for the almost complete distinction in the shore fishes of Hawaii and California.25

No other group of islands in the tropics has a fish fauna so isolated as that of Hawaii. The genera are largely the ordinary tropical types. The species are largely peculiar to these islands.

The westward current from Hawaii reaches Luzon and Formosa. It is deflected to the northward and, joining a northward current from Celebes, it forms the Kuro Shiwo or Black Stream of Japan, which strews its tropical species in the rock pools along the Japanese promontories as far as Tokio. Then, turning into the open sea, it passes northward to the Aleutian Islands, across to Sitka. Thence it moves southward as a cold current, bearing Ochotsk-Alaskan types southward as far as the Santa Barbara Islands, to which region it is accompanied by species of Aleutian origin. A cold return current seems to extend southward in Japan, along the east shore perhaps as far as Matsushima. A similar current in the sea to the west of Japan extends still further to the southward, to Noto, or beyond.

It is, of course, not necessary that the movements of a species in an oceanic current should coincide with the direction of the current. Young fishes, or fresh-water fishes, would be borne along with the water. Those that dwell within floating bodies of seaweed would go whither the waters carry the drifting mass. But free-swimming fishes, as the mackerel or flying-fishes, might as readily choose the reverse direction. To a free-swimming fish the temperature of the water would be the only consideration. It is thus evident that a current which to certain forms would prove a barrier to distribution, to others would be a mere convenience in movement.

In comparing the Japanese fauna with that of Australia, we find some trace of both these conditions. Certain forms are perhaps excluded by cross-currents, while certain others seem to have been influenced only by the warmth of the water. A few Australian types on the coast of Chile seem to have been carried over by the cross-currents of the South Atlantic.

It is fair to say that the part taken by oceanic currents in the distribution of shore fishes is far from completely demonstrated. The evidence that they assist in such distribution is, in brief, as follows:

1. The young of shore fishes often swim at the surface.

2. The young of very many tropical fishes drift northward in the Gulf Stream and the Japanese Kuro Shiwo.

3. The faunal isolation of Hawaii may be correlated with the direction of the oceanic currents.

Centers of Distribution.—We may assume, in regard to any species, that it has had its origin in or near that region in which it is most abundant and characteristic. Such an assumption must involve a very large percentage of error or of doubt, but in considering the mass of species, it may represent essential truth. In the same fashion we may regard a genus as being autochthonous or first developed in the region where it shows the greatest range or variety of species. Those regions where the greatest number of genera are thus autochthonous may be regarded as centers of distribution. So far as the marine fishes are concerned, the most important of these supposed centers are found in the Pacific Ocean. First of these in importance is the East-Indian Archipelago, with the neighboring shores of India. Next would come the Arctic Pacific and its bounding islands, from Japan to British Columbia. Third in importance in this regard is Australia. Important centers are found in temperate Japan, in California, the Panama region, and in New Zealand, Chili, and Patagonia. The fauna of Polynesia is almost entirely derived from the Indies; and the shore fauna of the Red Sea, the Bay of Bengal, and Madagascar, so far as genera are concerned, seems to be not really separable from the Indian fauna generally.


Fig. 174.—Globefish, Tetraodon setosus Rosa Smith. Clarion Island, Mexico.

I know of but six genera which may be regarded as autochthonous in the Red Sea, and nearly all of these are of doubtful value or of uncertain relation. The many peculiar genera described by Dr. Alcock, from the dredgings of the Investigator in the Bay of Bengal, belong to the bathybial or deep-water series, and will all, doubtless, prove to be forms of wide distribution.

In the Atlantic, the chief center of distribution is the West Indies; the second is the Mediterranean. On the shores to the northward or southward of these regions occasional genera have found their origin. This is true especially of the New England region, the North Sea, the Gulf of Guinea, and the coast of Argentina. The fish fauna of the North Atlantic is derived mainly from the North Pacific, the differences lying mainly in the relative paucity of the North Atlantic. But in certain groups common to the two regions the migration must have been in the opposite direction, exceptions that prove the rule.

Distribution of Marine Fishes.—The distribution of marine fishes must be indicated in a different way from that of the fresh-water forms. The barriers which limit their range furnish also their means of dispersion. In some cases proximity overbalances the influence of temperature; with most forms questions of temperature are all-important.

Pelagic Fishes.—Before consideration of the coast-lines we may glance at the differences in vertical distribution. Many species, especially those in groups allied to the mackerel family, are pelagic—that is, inhabiting the open sea and ranging widely within limits of temperature. In this series some species are practically cosmopolitan. In other cases the genera are so. Each school or group of individuals has its breeding place, and from the isolation of breeding districts new species may be conceived to arise. The pelagic types have reached a species of equilibrium in distribution. Each type may be found where suitable conditions exist, and the distribution of species throws little light on questions of distribution of shore fishes. Yet among these species are all degrees of localization. The pelagic fishes shade into the shore fishes on the one hand and into the deep-sea fishes on the other.

Bassalian Fishes.—The vast group of bassalian or deep-sea fishes includes those forms which live below the line of adequate light. These too are localized in their distribution, and to a much greater extent than was formerly supposed. Yet as they dwell below the influence of the sun's rays, zones and surface temperatures are nearly alike to them, and the same forms may be found in the Arctic or under the equator. Their differences in distribution are largely vertical, some living at greater depths than others, and they shade off by degrees from bathybial into semi-bathybial, and finally into ordinary pelagic and ordinary shore types. Apparently all of the bassalian fishes are derived from littoral types, the changes in structure being due to degeneration of the osseous and muscular systems and of structures not needed in deep-sea life.


Fig. 175.—Sting-ray, Dasyatis sabina Le Sueur. Galveston.

The fishes of the great depths are soft in substance, some of them blind, some of them with very large eyes, all black in color, and very many are provided with luminous spots or areas. A large body of species of fishes are semi-bathybial, inhabiting depths of 20 to 100 fathoms, showing many of the characters of shore fishes, but far more widely distributed. Many of the remarkable cases of wide distribution of type belong to this class. In moderate depths red colors are very common, corresponding to the zone of red algæ, and the colors in both cases are perhaps determined from the fact that the red rays of light are the least refrangible.

A certain number of species are both marine and fresh water, inhabiting estuaries and brackish waters, while some more strictly marine ascend the rivers to spawn. In none of these cases can any hard and fast line be drawn, and some groups which are shore fishes in one region will be represented by semi-bathybial or fluviatile forms in another.26

Littoral Fishes.—The shore fishes are in general the most highly specialized in their respective groups, because exposed to the greatest variety of selecting conditions and of competition. Their distribution in space is more definite than that of the pelagic and bassalian types, and they may be more definitely assigned to geographical areas.

Distribution of Littoral Fishes by Coast-lines.—Their distribution is best indicated, not by realms or areas, but as forming four parallel series corresponding to the four great north and south continental outlines. Each of these series may be represented as beginning at the north in the Arctic fauna, practically identical in each of the four series, actually identical in the two Pacific series. Passing southward, forms are arranged according to temperature. One by one in each series, the Arctic types disappear; subarctic, temperate, and semi-tropical types take their places, giving way in turn to south-temperate and Antarctic forms. The distribution of these is modified by barriers and by currents, yet though genera and species may be different, each isotherm is represented in each series by certain general types of fishes.


Fig. 176.—Green-sided Darter, Diplesion blennioides Rafinesque. Clinch River. Family Percidæ.

Passing southward the two American series, the East Atlantic and the East Pacific, pass on gradually through temperate to Antarctic types. These are analogous to those of the Arctic, and in a few cases they are generally identical. The West Pacific (East Asian) series is not a continuous line on account of the presence of Australia, the East Indies, and Polynesia. The irregularities of these regions make a number of subseries, which break up the simplicity expressed in the idea of four parallel series. Yet the fauna of Polynesia is strictly East Indian, modified by the omission or alteration of species, and that of Australia is Indian at the north, and changes to the southward much as that of Africa does. In its marine fishes, it does not constitute a distinct "realm." The East Atlantic (Europe-African) series follows the same general lines of change as that of the West Atlantic. It extends, however, only to the South Temperate Zone, developing no Antarctic elements. The relative shortness of Africa explains in large degree, as already shown, the similarity between the tropical elements in the two Old-World series, as the similarity in tropical elements in the two American series must be due to a former depression of the connecting Isthmus. The practical unity of the Arctic marine fauna needs no explanation in view of the present shore lines of the Arctic Ocean.

Minor Faunal Areas.—The minor faunal areas of shore fishes may be grouped as follows:

East Atlantic.

 Icelandic,

 British,

 Mediterranean,

 Guinean,

 Cape.

West Atlantic.

 Greenlandic,

 New England,

 Virginian,

 Austroriparian,

 Floridian,

 Antillæan,

 Caribbean,

 Brazilian,

 Argentinan,

 Patagonian.

East Pacific.

 Arctic,

 Aleutian,

 Sitkan,

 Californian,

 San Diegan,

 Sinaloan,

 Panamanian,

 Peruvian,

 Revillagigedan,

 Galapagan,

 Chilian,

 Patagonian.

West Pacific.

 Arctic,

 Aleutian,

 Kurile,

 Hokkaido,

 Nippon,

 Chinese,

 East Indian,

 Polynesian,

 Hawaiian,

 Indian,

 Arabian,

 Madagascarian,

 Cape,

 North Australian,

 Tasmanian,

 New Zealand,

 Antarctic.

Equatorial Fishes Most Specialized.—In general, the different types are most highly specialized in equatorial waters. The processes of specific change, through natural selection or other causes, if other causes exist, take place most rapidly there and produce most far-reaching modification. As elsewhere stated, the coral reefs of the tropics are the centers of fish-life, the cities in fish economy. The fresh waters, the arctic waters, the deep sea and the open sea represent forms of ichthyic backwoods, regions where change goes on more slowly, and in them we find survivals of archaic or generalized types. For this reason the study in detail of the distribution of marine fishes of equatorial regions is in the highest degree instructive.

Realms of Distribution of Fresh-water Fishes.—If we consider the fresh-water fishes alone we may divide the land areas of the earth into districts and zones not differing fundamentally with those marked out for mammals and birds. The river basin, bounded by its shores and the sea at its mouth, shows many resemblances, from the point of view of a fish, to an island considered as the home of an animal. It is evident that with fishes the differences in latitude outweigh those of continental areas, and a primary division into Old World and New World would not be tenable.

The chief areas of distribution of fresh-water fishes we may indicate as follows, following essentially the grouping proposed by Dr. Günther:27

Northern Zone.—With Dr. Günther we may recognize first the Northern Zone, characterized familiarly by the presence of sturgeon, salmon, trout, whitefish, pike, lamprey, stickleback, and other species of which the genera and often the species are identical in Europe, Siberia, Canada, Alaska, and most of the United States, Japan, and China. This is subject to cross-division into two great districts, the first Europe-Asiatic, the second North American. These two agree very closely to the northward, but diverge widely to the southward, developing a variety of specialized genera and species, and both of them passing finally by degrees into the Equatorial Zone.

Still another line of division is made by the Ural Mountains in the Old World and by the Rocky Mountains in the New. In both cases the Eastern region is vastly richer in genera and species, as well as in autochthonous forms, than the Western. The reason for this lies in the vastly greater extent of the river basins of China and the Eastern United States, as compared with those of Europe or the Californian region.


Fig. 177.—Japanese Sea-horse, Hippocampus mohnikei Bleeker. Misaki, Japan.

Minor divisions are those which separate the Great Lake region from the streams tributary to the Gulf of Mexico; and in Asia, those which separate China from tributaries of the Caspian, the Black, and the Mediterranean.

Equatorial Zone.—The Equatorial Zone is roughly indicated by the tropics of Cancer and Capricorn. Its essential feature is that of the temperature, and the peculiarities of its divisions are caused by barriers of sea or mountains.

Dr. Günther finds the best line of separation into two divisions to lie in the presence or absence of the great group of dace or minnows,28 to which nearly half of the species of fresh-water fishes the world over belong. The entire group, now spread everywhere except in the Arctic, South America, Australia, and the islands of the Pacific, seems to have had its origin in India, from which region its genera have radiated in every direction.

The Cyprinoid division of the Equatorial Zone forms two districts, the Indian and the African. The Acyprinoid division includes South America, south of Mexico, and all the islands of the tropical Pacific lying to the east of Wallace's line. This line, separating Borneo from Celebes and Bali from Lompoe, marks in the Pacific the western limit of Cyprinoid fishes, as well as that of monkeys and other important groups of land animals. This line, recognized as very important in the distribution of land animals, coincides in general with the ocean current between Celebes and Papua, which is one of the sources of the Kuro Shiwo.

In Australia, Hawaii, and Polynesia generally, the fresh-water fishes are derived from marine types by modification of one sort or another. In no case, so far as I know, in any island to the eastward of Borneo, is found any species derived from fresh-water families of either the Eastern or the Western Continent. Of course, minor subdivisions in these districts are formed by the contour lines of river basins. The fishes of the Nile differ from those of the Niger or the Congo, or of the streams of Madagascar

or Cape Colony, but in all these regions the essential

character of the fish fauna remains the same.

Southern Zone.—The third great region, the Southern Zone, is scantily supplied with fresh-water fishes, and the few it possesses are chiefly derived from modifications of the marine fauna or from the Equatorial Zone to the north. Three districts are recognized—Tasmania, New Zealand, and Patagonia.

Origin of the New Zealand Fauna.—The fact that certain peculiar groups are common to these three regions has attracted the notice of naturalists. In a critical study of the fish fauna of New Zealand,29 Dr. Gill discusses the origin of the four genera and seven species of fresh-water fishes found in these islands, the principal of these genera (Galaxias) being represented by nearly related species in South Australia, in Patagonia,30 the Falkland Islands, and in South Africa.

According to Dr. Gill, we can account for this anomaly of distribution only by supposing, on the one hand, that their ancestors were carried for long distances in some unnatural manner, as (a) having been carried across entombed in ice, or (b) being swept by ocean currents, surviving their long stay in salt water, or else that they were derived (c) from some widely distributed marine type now extinct, its descendants restricted to fresh water.

On the other hand, Dr. Gill suggests that as "community of type must be the expression of community of origin," the presence of fishes of long-established fresh-water types must imply continuity or at least contiguity of land. The objections raised by geologists to the supposed land connection of New Zealand and Tasmania do not appear to Dr. Gill insuperable. It is well known, he says, "that the highest mountain chains are of comparatively recent geological age. It remains, then, to consider which is the more probable, (1) that the types now common in distant regions were distributed in some unnatural manner by the means referred to, or (2) that they are descendants of forms once wide-ranging over lands now submerged." After considering questions as to change of type in other groups, Dr. Gill is inclined to postulate, from the occurrence of species of the trout-like genus Galaxias, in New Zealand, South Australia, and South America, that "there existed some terrestrial passage-way between the several regions at a time as late as the close of the Mesozoic period. The evidence of such a connection afforded by congeneric fishes is fortified by analogous representatives among insects, mollusca, and even amphibians. The separation of the several areas must have occurred little later than the late Tertiary, inasmuch as the salt-water fishes of corresponding isotherms found along the coast of the now widely separated lands are to such a large extent specifically different. In general, change seems to have taken place more rapidly among marine animals than fresh-water representatives of the same class."

In this case, when one guess is set against another, it seems to me that the hypothesis first suggested, rather than the other, lies in the line of least logical resistance. I think it better to adopt provisionally some theory not involving the existence of a South Pacific Antarctic Continent, to account for the distribution of Galaxias. For this view I may give five reasons:

1. There are many other cases of the sort equally remarkable and equally hard to explain. Among these is the presence of species of paddle-fish and shovel-nosed sturgeon,31 types characteristic of the Mississippi Valley, in Central Asia. The presence of one and only one of the five or six American species of pike32 in Europe; of one of the three species of mud-minnow in Austria,33 the others being American. Still another curious case of distribution is that of the large pike-like trout of the genus Hucho, one species (Hucho hucho) inhabiting the Danube, the other (Hucho blackistoni) the rivers of northern Japan. Many such cases occur in different parts of the globe and at present admit of no plausible explanation.

2. The supposed continental extension should show permanent traces in greater similarity in the present fauna, both of rivers and of sea. The other fresh-water genera of the regions in question are different, and the marine fishes are more different than they could be if we imagine an ancient shore connection. If New Zealand and Patagonia were once united other genera than Galaxias would be left to show it.

3. We know nothing of the power of Galaxias to survive submergence in salt water, if carried in a marine current. As already noticed, I found young and old in abundance of the commonest of Japanese fresh-water fishes in the open sea, at a distance from any river. Thus far, this species, the hakone34 dace, has not been recorded outside of Japan, but it might well be swept to Korea or China. Two fresh-water fishes of Japanese origin now inhabit the island of Tsushima in the Straits of Korea.

4. The fresh-water fishes of Polynesia show a remarkably wide distribution and are doubtless carried alive in currents. One river-goby35 ranges from Tahiti to the Riu Kiu Islands. Another species,36 originally perhaps from Brazil through Mexico, shows an equally broad distribution.

5. We know that Galaxias with its relatives must have been derived from a marine type. It has no affinity with any of the fresh-water families of either continent, unless it be with the Salmonidæ. The original type of this group was marine, and most of the larger species still live in the sea, ascending streams only to spawn.

When the investigations of geologists show reason for believing in radical changes in the forms of continents, we may accept their conclusions. That geological evidence exists which seems to favor the existence of a former continent, Antarctica, is claimed on high authority. If this becomes well established we may well explain the distribution of Galaxias with reference to it. But we cannot, on the other hand, regard the anomalous distribution of Galaxias alone constituting proof of shore connection. There can be no doubt that almost every case of anomalies in the distribution of fishes admits of a possible explanation through "the slow action of existing causes."

Real causes are always simple when they are once known. All anomalies in distribution cease to be such when the facts necessary to understand them are at our disposal.

A Guide to the Study of Fishes

Подняться наверх