Читать книгу Холестериновый атеросклероз, или Как предупредить инфаркт. Немного о гипотезах старения нашего организма - Евгений Иринин - Страница 7
Глава 1. Холестериновая теория атеросклероза
Гены и наследственная гиперхолестеринемия
ОглавлениеЧасто в разговорах на тему здоровья можно услышать глубокомысленную фразу: «Гены решают все…» Тем не менее далеко не все представляют, что стоит за этим выражением. Краткое рассмотрение вопроса о генах нам представляется целесообразным из тех соображений, что, во-первых, это интересно и познавательно, во-вторых, гены, оказывается, имеют непосредственное отношение к «поломке» рассмотренного выше процесса метаболизма ЛПНП, а, таким образом, и к развитию атеросклероза.
Стало известно (60-е годы XX века), что носителем генетической информации является ДНК (дезоксирибонуклеиновая кислота) – макромолекула, обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК находится в ядре клеток хромосом, а также в митохондриях. Здесь речь пойдет о ядерной ДНК. Что собой представляет эта молекула? Она состоит из двух длинных цепей химических звеньев, скрученных, как коса, в двойную спираль. При этом четыре вида звеньев в ДНК подчиняются строгому закону: звену одного какого-то типа в первой цепи соответствует звено определенного типа во второй цепи. Эти повторяющиеся звенья именуются нуклеотидами. В состав ДНК входят 4 типа нуклеотидов: аденин (А), тимидин (Т), гуанин (G) и цитозин (С). Во всех молекулах ДНК одиночной клетки содержатся более 3 млрд пар нуклеотидов. Геном человека – это совокупность наследственного материала, заключенного в клетке. Состоит из 23 пар хромосом, находящихся в ядре, при этом на каждую пару хромосом приходится по одной молекуле ДНК. Найдено, что на долю генов приходится только около 3% общей длины ДНК человека. Внегенные участки ДНК иногда называют мусором. Функциональная роль этой «мусорной» части ДНК, составляющей около 97% общей длины цепи ДНК, по-видимому, еще не определена.
Ген – это участок цепочки ДНК, который кодирует определенный белок. Гены не организованы в одну длинную последовательность, а состоят из участков, называемых экзонами. Они отличаются от других участков цепи тем важнейшим свойством, что именно на генах образуются «инструкции» для производства белков, которые управляют всей жизнью организма. Полагают, что ДНК человека содержит около 30—50 тысяч генов.
Если строение гена отличается от «стандарта», то можно говорить о его мутации. Эта мутация найдет свое отражение в структуре и функции белка, которым управляет данный ген. В случае когда синтезированный под управлением дефектного гена измененный белок играет ключевую роль в том или ином обменном процессе, может развиться генетически детерминированная болезнь. Важнейшей характеристикой мутантного гена является его способность или неспособность к доминированию. Соответственно различают доминантные и рецессивные гены. Если ген доминантный, то контролируемый им признак (болезнь) обязательно проявится не только при гомозиготном, но и при гетерозиготном наследовании. Если ген рецессивный, то при гетерозиготном наследовании он, как правило, не проявляет себя.
Таким образом, весь набор генов распределен в 46 хромосомах, содержащихся в каждой соматической клетке. Расшифровка генома – это выяснение, в каком порядке расположены звенья полимерной цепи. Именно от этого порядка зависит вся наша биологическая индивидуальность вплоть до различных болезней, к которым мы предрасположены. Очевидно, что геномы различных людей отличаются друг от друга. Однако оказалось, что из миллиардов генетических букв, из которых состоит ДНК человека, 99,9% – одни и те же у всех людей. Получается, что всего от одной десятой доли процента генома зависит, кто мы есть – здоровые или больные, сильные или слабые, оптимисты или пессимисты и т. д. Как ДНК кодирует белки? Какую «грамматику» она использует? Как мы уже отмечали выше, «буквами» в ДНК-тексте служат нуклеотиды. Поскольку их всего 4 типа, то иногда геном человека именуют «энциклопедией, написанной четырьмя буквами». У одного человека кусочек цепочки ДНК представлен одним чередованием звеньев (нуклеотидов), у другого – другим чередованием. Суть в том, что последовательность звеньев в цепочке может быть любой, но эта последовательность строго связана с последовательностью звеньев в другой (парной) полимерной цепочке: напротив А должно быть Т, напротив Т должно быть А, напротив С должно быть G, а напротив G должно быть С. Одиночная замена одного какого-то нуклеотида в данной точке ДНК на другой нуклеотид на языке генетиков называют снипсом. Снипсы являются своего рода биологическими маркерами, помогающими найти гены, связанные с тем или иным заболеванием.
Отметим, что за открытие структуры ДНК американцы Дж. Уотсон, Ф. Крик и англичанин М. Уилкин получили в 1962 году Нобелевскую премию. В историческом масштабе открытие структуры ДНК сопоставимо с открытием структуры атома. Если последнее привело к появлению квантовой механики, то открытие структуры ДНК дало начало молекулярной биологии. ДНК назвали главной молекулой живой природы. Почему столь велико значение этого открытия? Потому что гены, составляющие основу человеческого генома, управляют нашей жизнью от момента зачатия до последнего вздоха, без них не функционирует ни один наш орган: не работает мозг, не бьется сердце, не течет кровь. Раскрытие структуры ДНК имеет огромнейшее значение, потому что человек получил научную основу для того, чтобы познать самого себя.
Очевидно, что важнейшим вопросом в области генетики после открытия структуры ДНК является изучение роли генов – какой ген чем управляет. За разработку метода изучения функции генов группа американских и английских исследователей была также удостоена Нобелевской премии по медицине и физиологии за 2007 год. В настоящее время определено около 1000 генов, связанных с различными болезнями человека. Найдены снипсы, связанные с некоторыми видами рака, различными аутоиммунными заболеваниями, диабетом и т. д. Например, часто встречающееся такое наследственное заболевание, как синдром Дауна, связывают с патологией в 21-й паре хромосом, при этом этот признак болезни ребенка в настоящее время регистрируется на стадии беременности матери. Одним словом, в этой области достигнуты существенные успехи. Что дальше? Можно ли «больной» ген заменить на «здоровый», подобно тому как заменяют деталь в автомобиле? Эту задачу должны решить специалисты нового направления – генной терапии. Полагают, что и эта задача, возможно, будет в будущем решена. Сегодня ДНК-анализ перешел в разряд исследований, доступных каждому, свидетельством чего являются частые телевизионные передачи, связанные с дележом имущества и необходимостью идентификации личности. Именно последовательности нуклеотидов ДНК конкретного человека составляют его ДНК-профиль, или «генетический паспорт», который можно использовать для идентификации личности.
В завершение этого раздела отметим, что каждый из нас, будучи здоровым, является гетерозиготным носителем определенных «плохих» генов. Среди родственников одной семьи имеется много одинаковых генов, т.е. они являются гетерозиготными носителями по одному и тому же патологическому гену. Поэтому при родственном браке может проявиться наследственность двух однотипных гетерозигот и рождение ребенка-гомозигота. Яркие примеры неблагоприятного влияния родственных браков на потомство являют собой королевские династии. Печальным последствием таких браков являлось появление на свет неполноценных людей. По этой же причине угасла династия египетских фараонов, в которой из поколения в поколение заключались браки между родными братьями и сестрами.
Разумеется, что мы рассмотрели самые приблизительные представления о работе генов и их мутациях, необходимые для обсуждения роли генов в развитии атеросклероза.
Вернемся теперь к обсуждению основного вопроса: каким образом может быть нарушен раскрытый упомянутыми выше нобелевскими лауреатами столь совершенный рецепторный механизм регулирования ЛПНП и содержания холестерина в клетке и крови?
Клеточный рецептор ЛПНП, как мы отметили выше, – это белок. Мы теперь знаем, что первичная структура всех белков записана в генах, при этом дважды: один ген находится в отцовской хромосоме, другой – в материнской. Исследования М. Брауна и Д. Гольдштейна показали, что наследственные нарушения метаболизма ЛПНП связаны главным образом с мутацией генов, кодирующих рецептор ЛПНП. К настоящему периоду выявлены 4 моногенные формы семейной гиперхолестеринемии (СГХС), в основе которой лежит нехватка рецепторов ЛПНП в печеночных и других соматических клетках или их изъян в работе. При нехватке или дефектной работе рецепторов ЛПНП плохо захватываются клетками-потребителями холестерина, накапливаются в циркулирующей крови, что является не только причиной СГХС, но и основой развития многоступенчатого атеросклеротического процесса, который мы и будем рассматривать в дальнейшем.
Причина этой формы наследственной СГХС – мутация в одном из моногенов 19-й хромосомы, контролирующем синтез рецепторов ЛПНП. Чаще всего в случае наследственной гиперхолестеринемии поврежден один из двух генов, кодирующих белок-рецептор. В этом случае, как мы отмечали выше, говорят о гетерозиготной форме наследственной болезни. Этот вид мутации распространен в странах Восточной Европы с частотой приблизительно 1 человек на 500 человек. У людей с таким мутантным геном половина рецепторов просто не работает. Таким людям рано грозит атеросклероз, поскольку концентрация холестерина в крови достигает очень высоких значений в возрасте 35—40 лет, что приводит к выраженному атеросклерозу и риску инфаркта миокарда. Исследования показали, что среди 60-летних пациентов с ишемической болезнью сердца у каждого 20-го болезнь вызвана в дефекте гена, кодирующего рецептор. Заметим здесь, что в настоящее время концентрация холестерина у таких больных может быть доведена до нормы приемом статинов, терапевтические свойства которых мы подробно обсудим ниже.
Полезно для читателя отметить, что характерным признаком гетерозиготной формы семейной гиперхолестеринемии является ксантоматоз – отложение холестерина в сухожилиях, приводящее к их резкому утолщению, а также инфильтрация холестерина вдоль края радужной оболочки – липоидная дуга роговицы.
В том случае, когда оба родителя имеют отмеченный выше дефект в 19-й хромосоме, то рождающийся у них наследник приобретает гомозиготный вариант наследственной гиперхолестеринемии, обусловленный наличием у него сразу двух мутантных гена. Такие люди живут недолго. Спасением их жизни может быть трансплантация печени. К счастью, гомозиготный вариант наследственной СГХС встречается значительно реже – 1 человек на 1 млн.
Второй тип мутации, приводящей к СГХС, – это дефект синтеза апопротеина В-100 – основной белковой частицы ЛПНП. Нарушение в структуре этого белка, который, как мы отметили ранее, является лигандом (связующим мостиком с рецептором ЛПНП в клетке), затрудняет захват ЛПНП, что также приводит к избыточному количеству холестерина в крови.
Таким образом, семейная гиперхолестеринемия обусловлена разнообразными видами генетических дефектов рецепторов ЛПНП, более подробное рассмотрение которых здесь представляется излишним. Отметим еще раз, что результатом этих мутаций является нарушение нормального лиганд-рецепторного взаимодействия как вследствие количественных (отсутствие или дефицит), так и качественных (нарушение функции) изменений молекул как рецептора, так и лиганда (апобелка).
Рассматривая генетические аспекты развития атеросклероза, кроме отмеченных мутаций рецептора ЛПНП и апоВ, интересно упомянуть роль гена, регулирующего фермент со сложным названием «пропротеин конвертаза субтилизинкексин тип 9» (PCSK9). Нужны ли такого рода подробности, спросит читатель, полагая приводимые данные излишней теорией. Однако суть в том, что все эти сведения имеют непосредственное практическое значение для людей с избыточным холестерином, поскольку такого рода сведения позволяют читателю посмотреть свою личную «холестериновую историю» с научных позиций и более грамотно подходить к проблеме достижения «правильного» уровня холестерина.
Итак, о мутации этого фермента. Особенность этой мутации заключается в том, что она проявляется по-разному. Когда синтезируются PCSK9 с повышенным сродством к рецепторам ЛПНП, их работа тормозится, развивается гиперхолестеринемия. Если же будет синтезироваться PCSK9 с низким сродством к рецепторам ЛПНП, они начнут функционировать более активно, что приведет к низкому содержанию ЛПНП. Таким образом, лица, имеющие мутации, которые приводят к потере функции в гене PCSK9, имеют очень низкие уровни ЛПНП и характеризуются малым риском развития ИБС (это нонсенс-мутация). Такие мутации встречаются довольно редко и в основном в популяции темнокожих в Африке. История с этим типом мутации нашла свое дальнейшее развитие и выразилась в разработке новых лекарственных препаратов для предотвращения атеросклероза. Более подробно о самом ферменте PCSK9, его влиянии на уровень ЛПНП и новейших лекарственных препаратах мы расскажем в главе 3.
Чем семейная (наследственная) гиперхолестеринемия отличается от приобретенной? Приобретенная гиперхолестеринемия является главной причиной повышения уровня ЛПНП без патологии функционирования рецепторной системы. В ее развитии ведущую роль играют такие факторы, как пищевой рацион, малоподвижный образ жизни, избыточный вес. Что касается других факторов, влияющих на развитие гиперхолестеринемии, то отмечается, что у мужчин она проявляется чаще по сравнению с женщинами и последствия ее более тяжелые. Возраст имеет свое значение. После 45 лет у мужчин и 55 лет у женщин частота осложнений СГХС возрастает.
Какой вывод можно сделать в завершение этого параграфа? Он заключается в том, что у здоровых людей существует гармоничная система обмена холестерина. Сбой в такой системе приводит к увеличению уровня ЛПНП, что ассоциируется с атеросклерозом. Однако приведенные данные пока не позволяют говорить о механизме развития атеросклероза, поскольку последний характеризуется поражением сосудов, роль которых мы еще не затрагивали. Очевидно, чтобы говорить о возникновении атеросклеротических поражений сосудов, необходимо рассмотреть, каким образом повышенный уровень ЛПНП (в результате нарушения рецепторного механизма) делает их атерогенными частицами и каким образом эти частицы взаимодействуют с внутренней стенкой кровеносного сосуда, оказывая повреждающее действие. Для чего сначала познакомимся со строением и функцией артерий, по которым течет кровь.