Читать книгу Indoor Photovoltaics - Группа авторов - Страница 33

References

Оглавление

1 1. Chabas, J.M. et al., New demand, new markets: What edge computing means for hardware companies, Article, McKinsey & Company, November 2018, https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/new-demand-new-markets-what-edge-computing-means-for-hardware-companies#, accessed 27 January 2020, USA.

2 2. Bélidor, B.F., Architecture hydraulique, ou l’art de conduire, d’élever et de ménager les eaux pour les differens besoins de la vie, 1737–1753, Charles-Antoine Jombert, Paris.

3 3. Grand Rapids Public Museum, Grand Rapids, MI, USA, 2020, https://www.grpmcollections.org/Detail/objects/134698, accessed 27 January.

4 4. World Bank, https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS.

5 5. Weiner, C., How the transistor emerged. IEEE Spectrum, 10, 1, 24–33, 1973.

6 6. Chu, P.B. et al., Optical communication link using micromachined corner cuber reflectors, in: Proc. IEEE The Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, pp. 350–355, Nagoya, Japan, 1997.

7 7. Kickoff slides from MEMS PI meeting, https://people.eecs.berkeley.edu/~pister/SmartDust/, June 1998, accessed 27 January 2020.

8 8. Nowak, R. (Ed.), Proc. of the DARPA Energy Harvesting Program Review, DARPA, Washington, D.C., USA, April 13–14 2000.

9 9. Feynman, R.P. et al., The Feynman Lectures on Physics, vol. I, California Institute of Technology, USA, 1963, Chapter 4.1 https://www.feynmanlectures.caltech.edu/I_04.html.

10 10. Paradiso, J. and Starner, T., Energy scavenging for mobile and wireless electronics. IEEE Perv. Comp., 4, 1, 18–27, 2005.

11 11. Briand, D. et al., Micro energy harvesting, in: Advanced Micro and Nanosystems, Wiley, Weinheim, Germany, 2015.

12 12. Spies, P. et al., Handbook of Energy Harvesting Power Supplies and Applications, Pan Stanford Publishing, Boca Raton, USA, 2015.

13 13. Mitcheson, P.D. et al., Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE, 96, 9, 1457–1486, 2008.

14 14. Safaei, M. et al., A review of energy harvesting using piezoelectric materials: State-of-the-art a decade later (2008–2018). Smart Mat. Struct., 28, 113001, 2019.

15 15. Kinetron, 2020. https://www.kinetron.eu/smart-generators/, accessed 27 January.

16 16. ReVibe Energy, 2020. https://revibeenergy.com/, accessed 27 January.

17 17. Roundy, S. et al., Energy Scavenging for Wireless Sensor Networks: With Special Focus on Vibrations, Kluwer Academic Publishers, Boston, MA, USA, 2004.

18 18. Wakeling, J.M. and Nigg, B.M., Modification of soft tissue vibrations in the leg by muscular activity. J. Appl. Physiol., 90, 412–420, 2001.

19 19. EnOcean, 2020. https://www.enocean.com/en/products/enocean_modules_24ghz/, accessed 27 January.

20 20. Donelan, J.M. et al., Biomechanical energy harvesting: Generating electricity during walking with minimal user effort. Science, 319, 5864, 807–810, 2008.

21 21. Bionic Power, 2020. https://www.bionic-power.com/#features, accessed 27 January.

22 22. Fu, H. et al., Energy harvesting from human motion using footstep-induced airflow. J. Phys. Conf. Ser., 660, 1, 2015.

23 23. Sun, C. et al., On piezoelectric energy harvesting from human motion. JPEE, 7, 1, 155–164, 2019.

24 24. Brenes, A. et al., Tunable unipolar synchronized electric charge extraction strategy for piezoelectric energy harvesting. J. Int. Mat. Syst. Struct., 30, 11, 1629–1638, 2019.

25 25. Wood, A.R. et al., EP 2 677 656 A2, Tunable vibration energy harvester and method, General Electric, Schenectady, USA, 2013.

26 26. Zhu, G. et al., Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett., 10, 3151–3155, 2010.

27 27. PIEZO.COM, https://piezo.com/collections/piezoelectric-energy-harvesters?_=pf&pf_t_quantity=Quantity__1, accessed 27 January 2020.

28 28. Aktakka, E.E. et al., Energy scavenging from insect flight. J. Micromech. Microeng., 21, 9, 095016, 2011.

29 29. Safaei, M. et al., A review of energy harvesting using piezoelectric materials: State-of-the-art a decade later (2008–2018). Smart Mat. Struct., 28, 113001, 2019.

30 30. Betz, A., Das Maximum der theoretisch nutzbaren Ausnutzung des Windes durch Windmotoren. Zeitschrift für das gesamte Turbinenwesen, 26, 307–309, 1920.

31 31. Lissaman, P.B.S., Low-Reynolds-number airfoils. Ann. Rev. Fluid Mech., 15, 223–239, 1983.

32 32. Yuan, M. et al., Recent developments of acoustic energy harvesting: A review. Micromachines (Basel), 10, 1, 48, 2019.

33 33. Freunek, M. et al., New physical model for thermoelectric generators. J. Elec. Mat., 38, 1214–1220, 2009.

34 34. Soong, R.K. et al., Powering an inorganic nanodevice with a biomolecular motor. Science, 290, 5496, 1555–1558, 2000.

35 35. Voltree Power, http://voltreepower.com/bioHarvester.html, accessed 27 January 2020.

36 36. Love, C.J. et al., Source of sustained voltage difference between the xylem of a potted Ficus benjamina tree and its soil. PLoS ONE, 3, 8, e2963, 2008.

37 37. Rasmussen, M. et al., An implantable biofuel cell for a live insect. J. Am. Chem. Soc., 134, 3, 1458–1460, 2012.

38 38. Zebda, A. et al., Challenges for successful implantation of biofuel cells. Bioelectrochem., 124, 57–72, 2018.

39 39. Serdijn, W.A. et al., Chap. 4.2 - Introduction to RF energy harvesting, in: Wearable Sensors: Fundamentals, Implementation and Applications, E. Sazonov and M.R. Neuman (Eds.), Academic Press, San Diego, 2014.

40 40. Cansiz, M. et al., Efficiency in RF energy harvesting systems: A comprehensive review. Energy, 74, 292–309, 2019.

41 41. Lal, A. et al., Pervasive power: A radioisotope-powered piezoelectric generator. IEEE Perv. Comp., 4, 1, 53–61, 2005.

42 42. Kumar, S., Atomic batteries: Energy from radioactivity. J Nucl. En. Sci. Power Generat. Technol., 5, 1, 2016.

43 43. Freunek, M., Theory of information for data science systems, BKW AG, Switzerland, unpublished, 2019.

44 44. Dominitz, J. and Manski, C.F., More data or better data? A statistical decision problem. Rev. Econ. Stud., 84, 4, 1583–1605, 2017.

Indoor Photovoltaics

Подняться наверх