Читать книгу Organofluorine Chemistry - Группа авторов - Страница 37
References
Оглавление1 1 Recent reviews: (a) Han, J., Fustero, S., Soloshonok, V.A. et al. (2019). Chem. Eur. J. 25: 11797.(b) Pan, Y. (2019). ACS Med. Chem. Lett. 10: 1016.
2 2 Selected reviews: (a) Sawada, H. (1996). Chem. Rev. 96: 1779.(b) Zard, S. (2016). Z. Org. Biomol. Chem. 14: 6891.Selected examples: (c) Schareina, T., Wu, X.‐F., Beller, M. et al. (2012). Top. Catal. 55: 426.(d) Sakamoto, R., Kashiwagi, H., and Maruoka, K. (2017). Org. Lett. 19: 5126.(e) Yang, B., Yu, D., and Qing, F.‐L. (2018). ACS Catal. 8: 2839.
3 3 Selected reviews: (a) Vijh, A.K. and Conway, B.E. (1967). Chem. Rev. 67: 623.(b) Svadkovskaya, G.E. and Voitkevich, S.A. (1960). Russ. Chem. Rev. 29: 161.(c) Banks, R.E. and Tatlow, J.C. (1986). J. Fluorine Chem. 33: 71.For a selected book: (d) Barlow, M.G. and Taylor, D.R. Per‐ and poly‐fluorinated olefins, dienes, heterocumulenes and acetylenes. In: Fluorocarbon and Related Chemistry, vol. 2, 1974 (eds. R.E. Banks and M.G. Barlow), 37–123. London, UK: Chemical Society.
4 4 Renaud, R.N. and Sullivan, D.E. (1972). Renaud reported cross‐coupling of alkyl radicals generated by co‐electrolysis of potassium trifluoroacetate in deuterated carboxylic acid as a solvent, obtaining trifluoroethane‐1,1,1‐d3 and pentafluoropropane‐1,1,1‐d3. Can. J. Chem. 50: 3084.
5 5 Renaud, R.N. and Sullivan, D.E. (1973). Can. J. Chem. 51: 772.
6 6 Grinberg, V.A. and Vassiliev, Y.B. (1992). Grinberg and Vassiliev examined in detail the mechanism of electrochemical perfluoroalkylation by means of kinetic and EPR studies, focusing on the electrochemical behavior and reactivity of the reactants and radical intermediates. J. Electroanal. Chem. 325: 167.
7 7 Brookes, C.J., Coe, P.L., Tatlow, J.C. et al. (1974). J. Chem. Soc., Chem. Commun. 3: 323.
8 8 Brookes, C.J., Pedler, A.E., Tatlow, J.C. et al. (1978). J. Chem. Soc., Perkin I 3: 202.
9 9 Renaud, R.N. and Champagne, P.J. (1975). Can. J. Chem. 53: 529.
10 10 Dmowski, W., Biernacki, A., Kozlowski, T. et al. (1997). Tetrahedron 53: 4437.
11 11 Renaud, R.N., Champagne, P.J., and Savard, M. (1979). Can. J. Chem. 57: 2617.
12 12 Renaud, R.N., Stephens, C.J., and Bérubé, D. (1982). Can. J. Chem. 60: 1687.
13 13 Vassiliev, Y.B., Bagotzky, V.S., Grinberg, V.A. et al. (1982). Electrochim. Acta 27: 919.
14 14 Muller, N. (1986). In this work, when acetone was used as co‐solvent of the reaction, a unique bifunctionalization‐type trifluoromethylation installing a methyl group derived from acetone was found to occur. J. Org. Chem. 51: 263.
15 15 Uneyama, K., Morimoto, O., and Nanbu, H. (1989). Tetrahedron Lett. 30: 109.
16 16 Uneyama, K., Makio, S., and Nanbu, H. (1989). Uneyama demonstrated derivatization of dimethyl 2,3‐bis(2,2,2‐trifluoroethyl)succinate prepared by electrochemical oxidation of trifluoroacetic acid and methyl acrylate under basic conditions. J. Org. Chem. 54: 872.
17 17 (a) Muller, N. (1983). J. Org. Chem. 48: 1370.(b) Muller, N. (1984). J. Org. Chem. 49: 2826.(c) Muller, N. (1984). J. Org. Chem. 49: 4559.
18 18 (a) Uneyama, K. (1991). Tetrahedron 47: 555.(b) Uneyama, K. (2000). J. Fluorine Chem. 105: 209.
19 19 Uneyama, K. and Ueda, K. (1988). Chem. Lett. 17: 853.
20 20 (a) Uneyama, K. and Nanbu, H. (1988). J. Org. Chem. 53: 4598.(b) Uneyama, K. and Watanabe, S. (1990). J. Org. Chem. 55: 3909.(c) Dan‐oh, Y. and Uneyama, K. (1995). Bull. Chem. Soc. Jpn. 68: 2993.(d) Uneyama, K., Watanabe, S., Tokunaga, Y. et al. (1992). Bull. Chem. Soc. Jpn. 65: 1976.(e) Sato, Y., Watanabe, S., and Uneyama, K. (1993). Bull. Chem. Soc. Jpn. 66: 1840.
21 21 Dmowski, W. and Biernacki, A. (1996). J. Fluorine Chem. 78: 193.
22 22 Krasil'nikov, A.A., Kaurova, G.I., Matalin, V.A. et al. (2009). Russ. J. Appl. Chem. 82: 2127.
23 23 (a) Andreev, V.N., Grinberg, V.A., Dedov, A.G. et al. (2013). Russ. J. Electrochem. 49: 996.See also, (b) Maiorova, N.A., Kagramanov, N.D., Grinberg, V.A. et al. (2013). Russ. J. Electrochem. 49: 181.
24 24 (a) Arai, K., Watts, K., and Wirth, T. (2014). ChemistryOpen 3: 23.See also, (b) Elsherbini, M. and Wirth, T. (2019). Acc. Chem. Res. 52: 3287.
25 25 (a) Grinberg, V.A., Polishchuk, V.R., German, L.S. et al. (1978). Bull. Acad. Sci. USSR, Div. Chem. Sci. 27: 580.(b) Grinberg, V.A., Lundgren, S.A., Sterlin, S.R. et al. (1997). Russ. Chem. Bull. 46: 1131.
26 26 Depecker, C., Trevin, S., Devynck, J. et al. (1999). New J. Chem. 23: 739.
27 27 Eisenberg, M. and DesMarteau, D.D. (1970). Inorg. Nucl. Chem. Lett. 6: 29.
28 28 Gregorčič, A. and Zupan, M. (1979). J. Org. Chem. 44: 4120.
29 29 Tanabe, Y., Matsuo, N., and Ohno, N. (1988). J. Org. Chem. 53: 4582.
30 30 Popkov, S.V. and Kuzenkov, A.V. (2005). Russ. Chem. Bull. 54: 1672.
31 31 Matsui, K., Tobita, E., Kondo, K. et al. (1981). Chem. Lett. 10: 1719.
32 32 Lin, R.W. and Davidson, R.I. (1989). Improved conditions using potassium trifluoroacetate were reported. Trifluoromethylation process. US Patent 4808748, filed 12 December 1985 and issued 28 February 1989.
33 33 Suzuki, H., Yoshida, Y., and Osuka, A. (1982). Chem. Lett. 11: 135.
34 34 Carr, G.E., Chambers, R.D., Holmes, T.F. et al. (1988). J. Chem. Soc., Perkin Trans. 1 4: 921.
35 35 Rijs, N.J. and O'Hair, R.A. (2012). O'Hair discussed the decomposition pathways of metal trifluoroacetates. J. Dalton Trans. 41: 3395.
36 36 Markovich, K.M., Tantishaiyakul, V., Miller, D.D. et al. (1992). J. Med. Chem. 35: 466.
37 37 Dong, L.C., Crowe, M., Ammann, J.R. et al. (2004). Tetrahedron Lett. 45: 2731.
38 38 Chen, M. and Buchwald, S.L. (2013). Angew. Chem. Int. Ed. 52: 11628.
39 39 McReynolds, K.A., Lewis, R.S., Vicic, D.A. et al. (2010). J. Fluorine Chem. 131: 1108.
40 40 (a) Lin, X., Hou, C., Weng, Z. et al. (2016). Chem. Eur. J. 22: 2075.(b) Wu, C., Huang, Y., and Weng, Z. (2016). Asian J. Org. Chem. 5: 1406.(c) Lin, X., Han, X., Weng, Z. et al. (2016). RSC Adv. 6: 75465.
41 41 Zhao, G., Wu, H., Liu, C. et al. (2016). RSC Adv. 6: 50250.
42 42 Li, Y., Chen, T., Duan, C. et al. (2011). Synlett 12: 1713.
43 43 (a) Chang, Y. and Cai, C. (2005). Tetrahedron Lett. 46: 3161.(b) Chang, Y. and Cai, C. (2005). J. Fluorine Chem. 126: 937.
44 44 (a) Boltalina, O.V., Popov, A.A., and Stauss, S.H. (2015). Chem. Rev. 115: 1051.See also, (b) Pimenova, A.S., Kozlov, A.A., Sidorov, L.N. et al. (2007). Dalton Trans.: 5322.
45 45 Uzkikh, I.S., Dorozhkin, E.I., Boltalina, O.V. et al. (2001). Dokl. Akad. Nauk 379: 344.
46 46 (a) Goryunkov, A.A., Kuvychko, I.V., Boltalina, O.V. et al. (2003). J. Fluorine Chem. 124: 61.(b) Dorozhkin, E.I., Strauss, S.H., Boltalina, O.V. et al. (2006). Chem. Eur. J. 12: 3876.
47 47 (a) Darwish, A.D., Avent, A.G., Taylor, R. et al. (2003). Chem. Commun. 3: 1374.(b) Darwish, A.D., Abdul‐Sada, A.K., Taylor, R. et al. (2003). Org. Biomol. Chem. 1: 3102.
48 48 Dorozhkin, E.I., Goryunkov, A.A., Ioffe, I.N. et al. (2007). Eur. J. Org. Chem. 2007: 5082.
49 49 Shi, G., Shao, C., Zhang, Y. et al. (2015). Org. Lett. 17: 38.
50 50 Tung, T.T., Christensen, S.B., and Nielsen, J. (2017). Chem. Eur. J. 23: 18125.
51 51 Wan, W., Ma, G., Hao, J. et al. (2016). Chem. Commun. 52: 1598.
52 52 Wang, Y., Hao, J., Wan, W. et al. (2019). Wan and Han also reported a decarboxylative homo‐coupling from potassium difluoroarylacetate by using the combination of AgNO3, (NH4)2S2O8, and KHCO3, affording tetrafluoroethylene‐bridging aromatic products. Synth. Commun. 49: 2961.
53 53 Wan, W., Li, J., Hao, J. et al. (2017). Org. Biomol. Chem. 15: 5308.
54 54 Li, Y.‐L., Wang, J.‐B., and Deng, J. (2017). Eur. J. Org. Chem. 2017: 6052.
55 55 Chen, F. and Hashmi, A.S.K. (2016). Org. Lett. 18: 2880.
56 56 Lai, C. and Mallouk, T.E. (1993). J. Chem. Soc., Chem. Commun.: 1359.
57 57 Lin, J., Su, W., Li, Y. et al. (2017). Nat. Commun. 8: 14353.
58 58 Bazyar, Z. and Hosseini‐Sarvari, M. (2019). Org. Process Res. Dev. 23: 2345.
59 59 Yang, B., Xu, X.H., and Qing, F.L. (2016). Org. Lett. 18: 5956.
60 60 Zhou, Y., Xiong, Z., Zhu, G. et al. (2019). Org. Chem. Front. 6: 1022.
61 61 (a) Meyer, C.F., Hell, S.M., Gouverneur, V. et al. (2019). Angew. Chem. Int. Ed. 58: 8829.(b) Meyer, C.F., Hell, S.M., Gouverneur, V. et al. (2019). Tetrahedron 75: 130679.
62 62 Bogdanov, V.P., Dmitrieva, V.A., Goryunkov, A.A. et al. (2019). J. Fluorine Chem. 226: 109344.
63 63 Yang, F., Wu, Y., Wu, Y. et al. (2016). Adv. Synth. Catal. 358: 1699.
64 64 Hong, G., Yuan, J., Zhang, X. et al. (2019). Org. Chem. Front. 6: 1173.
65 65 Zhong, S., Hafner, A., Bräse, S. et al. (2015). RSC Adv. 5: 6255.
66 66 Kawamura, S. and Sodeoka, M. (2019). Bull. Chem. Soc. Jpn. 92: 1245.
67 67 (a) Kawamura, S. and Sodeoka, M. (2016). Angew. Chem. Int. Ed. 55: 8740.(b) Kawamura, S., Dosei, K., Sodeoka, M. et al. (2017). J. Org. Chem. 82: 12539.(c) Kawamura, S., Henderson, C.J., Sodeoka, M. et al. (2018). Chem. Commun. 54: 11276.(d) Valverde, E., Kawamura, S., Sodeoka, M. et al. (2018). Chem. Sci. 9: 7115.
68 68 Staveness, D., Bosque, I., and Stephenson, C.R.J. (2016). Acc. Chem. Res. 49: 2295.
69 69 (a) Beatty, J.W., Douglas, J.J., Stephenson, C.R.J. et al. (2015). Nat. Commun. 6: 7919.(b) Beatty, J.W., Douglas, J.J., Stephenson, C.R.J. et al. (2016). Chem 1: 456.(c) McAtee, R.C., Beatty, J.W., Stephenson, C.R.J. et al. (2018). Org. Lett. 20: 3491.See also, (d) Sun, A., McClain, E.J., Stephenson, C.R.J. et al. (2018). Org. Lett. 20: 3487.
70 70 Das, S., Hashmi, A.S.K., and Schaub, T. (2019). Adv. Synth. Catal. 361: 720.