Читать книгу Phytomicrobiome Interactions and Sustainable Agriculture - Группа авторов - Страница 29

References

Оглавление

1 Agrios, G.N. (2004). Plant Pathology, 5e. San Diego: Academic Press.

2 Badri, D.V., Zolla, G., Bakker, M.G. et al. (2013). Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol. 198: 264–273.

3 Bantscheff, M., Schirle, M., Sweetman, G. et al. (2007). Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 389 (4): 1017–1031.

4 Blagoev, B., Ong, S.E., Kratchmarova, I., and Mann, M. (2004). Temporal analysis of phosphotyrosine‐dependent signaling networks by quantitative proteomics. Nat. Biotechnol. 22 (9): 1139–1145.

5 Bosch, T.C.G. and McFall‐Ngai, M.J. (2011). Metaorganisms as the new frontier. Fortschr. Zool. 114 (4): 185–190.

6 Brechenmacher, L., Lei, Z., Libault, M. et al. (2010). Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. Plant Physiol. 153 (4): 1808–1822.

7  Bunai, K. and Yamane, K. (2005). Effectiveness and limitation of two dimensional gel electrophoresis in bacterial membrane protein proteomics and perspectives. J. Chromatogr. B815 (1‐2): 227–236.

8 Compant, S., Clement, C., and Sessitsch, A. (2010a). Plant growth‐promoting bacteria in the rhizo‐ and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42: 669–678.

9 Compant, S., Heijden, V.D., and Sessitsch, A. (2010b). Climate change effects on beneficial plant‐microorganism interactions. FEMS Microbiol. Ecol. 73: 197–214.

10 Dangl, J.L. and Jones, J.D. (2001). Plant pathogens and integrated defense responses to infection. Nature 411 (6839): 826–833.

11 Dunn, M.J. (1993). Gel electrophoresis: proteins. Bios: 41–127.

12 Engelmoer, D.J.P., Behm, J.E., and Kiers, E.T. (2014). Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance. Mol. Ecol. 23: 1584–1593.

13 Gorg, A., Weiss, W., and Dunn, M.J. (2004). Current two‐dimensional electrophoresis technology for proteomics. Proteomics 4 (12): 3665–3685.

14 Greenberg, J.T. and Yao, N. (2004). The role and regulation of programmed cell death in plant‐pathogen interactions. Cell. Microbiol. 6: 201–211.

15 Gygi, S.P., Rist, B., Gerber, S.A. et al. (1999). Quantitative analysis of complex protein mixtures using isotope‐coded affinity tags. Nat. Biotechnol. 17 (10): 994–999.

16 Hartmann, A., Rothballer, M., Hense, B.A., and Schröder, P. (2014). Bacterial quorum sensing compounds are important modulators of microbe‐plant interactions. Front. Plant Sci. 5 (131): 10.3389.

17 Heath, M. (2000). Hypersensitive response‐related cell death. Plant Mol. Biol. 44: 321–334.

18 Houterman, P.M., Speijer, D., Dekker, H.L. et al. (2007). The mixed xylem sap proteome of Fusarium oxysporum‐infected tomato plants. Mol. Plant Pathol. 2007 8: 215–221.

19 Jones, A. (2000). Does the plant mitochondrion integrate cellular stress and regulate programmed cell death? Trends Plant Sci. 5: 225–230.

20 Jones, J.D. and Dangl, J.L. (2006). The plant immune system. Nature 444: 323–329.

21 Joshi, P. (2017). Proteomics. In: Innovative Approaches in Drug Discovery (eds. B. Patwardhan and R. Chaguturu), 273–294. Academic Press.

22 Kav, N., Srivastava, S., Yajima, W., and Sharma, N. (2007). Application of proteomics to investigate plant‐microbe interactions. Curr. Proteomics 4: 28–4310.

23 Kostic, A.D., Chun, E., Robertson, L. et al. (2013). Fusobacterium nucleatumpotentiates intestinal tumorigenesis and modulates the tumor‐immune microenvironment. Cell Host Microbe 14 (2): 207–215.

24 Lebeis, S.L. (2015). Greater than the sum of their parts: characterizing plant microbiomes at the community level. Curr. Opin. Plant Biol. 24: 82–86.

25 Lee, V.T. and Schneewind, O. (2001). Protein secretion and the pathogenesis of bacterial infections. Genes Dev. 15: 1725–1752.

26 Lee, K.D., Gray, E.J., Mabood, F. et al. (2009). The class IId bacteriocin thuricin 17 increases plant growth. Planta 229: 747–755.

27 Lugtenberg, B. and and Kamilova, F. (2009). Plant‐growth‐promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541–556.

28  McDonald, W.H., Ohi, R., Miyamoto, D.T. et al. (2002). Comparison of three directly coupled HPLC MS/MS strategies for identification of proteins from complex mixtures: single‐dimension LC‐MS/MS, 2‐ phase MudPIT, and 3‐phase MudPIT. Int. J. Mass Spectrom. 219 (1): 245–251.

29 McFall‐Ngai, M.J. (2002). Unseen forces: the influence of bacteria on animal development. Dev. Biol. 242: 1–14.

30 McFall‐Ngai, M. (2008). Are biologists in 'future shock'? Symbiosis integrates biology across domains. Nat. Rev. Microbiol. 6 (10): 789–792.

31 Mehta, A., Brasileiro, A.C., Souza, D.S. et al. (2008). Plant‐pathogen interactions: what is proteomics telling us? FEBS J. 275: 3731–3746.

32 Montalbán, B., Thijs, S., Lobo, M.C. et al. (2017). Cultivar and metal‐specific effects of endophytic bacteria in Helianthus tuberosus exposed to Cd and Zn. Int. J. Mol. Sci. 18: 2026.

33 Murad, A.M., Laumann, R.A., Lima Tde, A. et al. (2006). Screening of entomopathogenic Metarhiziumanisopliae isolates and proteomic analysis of secretion synthesized inresponse to cowpea weevil (Callosobruchus maculatus) exoskeleton. Comp. Biochem. 142: 365–370.

34 Murad, A.M., Laumann, R.A., Mehta, A. et al. (2007). Screening and secretomic analysis of entomopathogenic Beauveria bassiana isolates in response to cowpea weevil (Callosobruchus maculatus) Journal of Pharmacognosy and Phytochemistryexoskeleton. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 145: 333–338.

35 Newman, M.A., Sundelin, T., Nielsen, J.T., and Erbs, G. (2013). MAMP (microbe‐associated molecular pattern) triggered immunity in plants. Front. Plant Sci. 4: 139.

36 Oda, Y., Huang, K., Cross, F.R. et al. (1999). Accurate quantitation of protein expression and site specific phosphorylation. Proc. Natl. Acad. Sci. 96 (12): 6591–6596.

37 Ong, S.E., Blagoev, B., Kratchmarova, I. et al. (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1 (5): 376–386.

38 Pisa, G., Magnani, G.S., Weber, H. et al. (2011). Diversity of 16S rRNA genes from bacteria of sugarcane rhizosphere soil. Braz. J. Med. Biol. Res. 44: 1215–1221.

39 Puhler, A., Arlat, M., Becker, A. et al. (2004). What can bacterial genome research teach us about bacteria–plant interactions? Curr. Opin. Plant. Biol. 7: 137–147.

40 Quecine, M.C., Araújo, W.L., Rossetto, P.B. et al. (2012). Sugarcane growth promotion by the endophytic bacterium Pantoeaagglomerans 33.1. Appl. Environ. Microbiol. 78 (21): 7511–7518.

41 Quirino, B.F., Candido, E.S., Campos, P.F. et al. (2010). Proteomic approaches to study plant‐pathogen interactions. Phytochemistry 71: 351–362.

42 Rampitsch, C., Bykova, N.V., McCallum, B. et al. (2006). Analysis of the wheat and Puccinia triticina (leaf rust) proteomes during a susceptible host‐pathogen interaction. Proteomics 6: 1897–1907.

43 Rasmussen, H.H., Orntoft, T.F., Wolf, H., and Celis, J.E. (1996). Towards a comprehensive database of proteins from the urine of patients with bladder cancer. J. Urol. 155: 2113–2119.

44 Ross, P.L., Huang, Y.N., Marchese, J.N. et al. (2004). Multiplexed protein quantitation in Saccharomyces cerevisiae using amine‐reactive isobaric tagging reagents. Mol. Cell. Proteomics 3 (12): 1154–1169.

45 Rudrappa, T., Czymmek, K.J., Paré, P.W., and Bais, H.P. (2008). Root‐secreted malic acid recruits beneficial soil bacteria. Plant Physiol. 148: 1547–1556.

46  Ryals, J., Neuenschwander, U., Willits, M. et al. (1996). Systemic acquired resistance. Plant Cell 8 (10): 1809–1819.

47 Santoyo, G., Moreno‐Hagelsieb, G., Del Carmen Orozco‐Mosqueda, M., and Glick, B.R. (2016). Plant growth‐promoting endophytes. Microbiol. Res. 183: 92–99.

48 Schirawski, J. and Perlin, M.H. (2018). Plant‐microbe interaction 2017 – the good, the bad and the diverse. Int. J. Mol. Sci. 19 (5): 1374.

49 Schneider, M., Schweizer, P., Meuwly, P., and Métraux, J.P. (1996). Systemic acquired resistance in plants. Int. Rev. Cytol. 168: 303–340.

50 Su, A.Y., Niu, S.Q., Liu, Y.Z. et al. (2017). Synergistic effects of Bacillus amyloliquefaciens(GB03) and water retaining agent on drought tolerance of perennialryegrass. Int. J. Mol. Sci. 18: 2651.

51 Washburn, M.P., Wolters, D., and Yates, J.R. III (2001). Large‐scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19 (3): 242–247.

52 Webb, C.A. and Feller, J.P. (2006). Cereal rust fungi genomics and the pursuit of virulence and avirulence factors. FEMS Microbiol. Lett. 264: 1–7.

53 Whitham, S.A., Yang, C., and Goodin, M.M. (2006). Global impact: elucidating plant responses to viral infection. Mol. Plant Microbe Interact. 19: 1207–1215.

54 Wolters, D.A., Washburn, M.P., and Yates, J.R. (2001). An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 73 (23): 5683–5690.

55 Yajima, W. and Kav, N.N. (2006). The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum. Proteomics 6: 5995–6007.

56 Zhang, Q., Gao, X., Ren, Y. et al. (2018). Improvement of Verticillium wilt resistance by applying arbuscular mycorrhizal fungi to a cotton variety with high symbiotic efficiency under field conditions. Int. J. Mol. Sci. 19: 241.

Phytomicrobiome Interactions and Sustainable Agriculture

Подняться наверх