Жанры
Авторы
Контакты
О сайте
Книжные новинки
Популярные книги
Найти
Главная
Авторы
Группа авторов
Encyclopedia of Glass Science, Technology, History, and Culture
Читать книгу Encyclopedia of Glass Science, Technology, History, and Culture - Группа авторов - Страница 1
Оглавление
Предыдущая
Следующая
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
...
357
Оглавление
Купить и скачать книгу
Вернуться на страницу книги Encyclopedia of Glass Science, Technology, History, and Culture
Оглавление
Страница 1
Table of Contents
List of Tables
List of Illustrations
Guide
Pages
Страница 7
Страница 8
Страница 9
Страница 10
List of Contributors
Preface
Select Additional Reading The Vitreous State
Glass Systems and Properties
Compilations of Glass Data
Glass Art
Страница 17
General Introduction
1 A Historical Random Walk 1.1
The Glass Age
1.2 An Economic Forerunner
1.3 A Multifaceted Material
1.4 The Silica Paradoxes 1.4.1 Biogenic Silica vs. Flint
1.4.2 A Quantum‐Chemical Factory: The Production of Silica Sand
2 Some Basic Concepts of Glass Science 2.1 From Metastability to Relaxation
2.2 Relaxation: Phenomenological Aspects
2.3 The Glass Transition 2.3.1 Standard Glass‐Transition Temperature
2.3.2 Volume Effects
2.3.3 Frequency Dependence
2.3.4 An Irreversible Transition
2.3.5 The Case of Plastic Crystals
2.3.6 Maxwell Model
2.4 Configurational Properties 2.4.1 Equivalence of Relaxation Kinetics
2.4.2 Vibrational vs. Configurational Relaxation
2.4.3 A Microscopic Picture
2.4.4 Compressibility and Permanent Compaction
2.4.5 Kauzmann Paradox
2.4.6 Potential Energy Landscape: Ideal Glass and Fragility
References
Appendix A
Section I. Glassmaking
1.1 Glass Production: An Overview
1 Introduction
2 Industrially Manufactured Glasses 2.1 Properties of Manufactured Glasses in General
2.2 Classification of Glasses by Commercial Branches
3 Process‐controlling Properties
3.1 Viscosity
3.2 Liquidus Temperatures
3.3 Liquid–liquid unmixing
4 Glass Composition – its Relevance to Glass Properties 4.1 Property Optimization
4.2 Elastic Properties
4.3 Thermal Expansion Coefficient
4.4 Chemical Durability
5 Perspectives
References
Note
1.2 Raw Materials for Glassmaking: Properties and Constraints
1 Introduction
2 Raw‐material Specifications 2.1 The Specificity of Raw Materials
2.2 Grain Size
2.3 Operational Parameters
3 From Raw Materials to Melt 3.1 Effects of Digestion Kinetics
3.2 Quantification of Heavy Minerals
3.3 Impurity‐related and Other Melting Defects
3.4 The Problem of Dolomite Decrepitation
4 Special Raw Materials 4.1 Sodium Carbonate
4.2 Raw Materials with Very Low Iron Contents
4.3 Globetrotting Raw Materials
5 Perspectives
References
Note
1.3 Fusion of Glass
1 Introduction
2 Overview of Industrial Processes
Preparation (at room temperature)
Glass melting (at high temperatures)
3 Batch Preparation 3.1 Raw Materials
3.2 Calculation of Batch Composition
4 The Conversion of Batch into Melt 4.1 The Basic Importance of Convection
4.2 The Chemistry of Melting
4.3 Sand Dissolution
5 Fining, Refining, Homogenization 5.1 Physical Fining
5.2 Chemical Fining
5.3 Homogeneization
6 Energetics of Glass Melting
7 Perspectives
Appendix
References
Note
1.4 Primary Fabrication of Flat Glass
1 Introduction
2 Overview
3 Updraw Processes 3.1 Fourcault
3.2 Colburn
3.3 Pittsburg Pennvernon
3.4 Asahi
4 Roll Out Process
5 Float Process 5.1 Principle
5.2 Float Bath
5.3 Thinner (Top‐Roll Process) and Thicker (Fender Process) Glass Ribbons
5.4 A Complex Industrial Problem
5.5 Trends in Float Production
6 Downdraw Processes 6.1 Slot Downdraw
6.2 Fusion Downdraw
7 Perspectives
References
Note
1.5 Fabrication of Glass Containers
1 Introduction
2 Principles of Glass‐Container Forming
2.1 Heat Management in Glass‐Container Forming
2.2 Interface Interactions in Glass‐Container Forming
2.3 Deformation Rates in Glass‐Container Forming
3 Glass‐Container Forming Processes 3.1 Glass Composition
3.2 Blow & Blow Process
3.3 Press & Blow Process
3.4 Narrow‐Neck & Blow Process
4 Making of the Gob: Forehearth, Feeder, and Shears
5 IS‐Forming Machine 5.1 General Principles
5.2 The IS‐Machine Families
5.3 Delivery Equipment
5.4 Blank‐Side Forming
5.5 Invert and Reheat
5.6 Blow‐Mold Forming
6 Hot‐End Handling, Hot‐End Coating, and Annealing
7 Cold‐End Handling and Inspection
8 Perspectives
References
Note
1.6 Continuous Glass Fibers for Reinforcement
1 Introduction
2 Commercial Glass Fibers 2.1 History of Fiberglass Development and Glass Chemistry 2.1.1 Fiber Types
2.1.2 E‐Glass
2.1.3 C‐Glass
2.1.4 AR‐Glass
2.1.5 D‐Glass
2.1.6 S‐Glass
2.1.7 R‐Glass
2.1.8 Glass Type Summary
2.2 Major Fiberglass Producers
3 Manufacturing of Glass Fibers 3.1 Primary and Secondary Processes
3.2 Glass Melting and Fining
3.3 Fiber Forming
3.4 The Role of Sizing/Binder in Glass Fiber Products
4 Markets and Applications 4.1 Global Glass Fiber Reinforced Polymeric Composite Markets
4.2 Emerging GRP Composite Markets
5 Perspectives
References
Note
1.7 Simulation in Glass Processes
1 Introduction
2 A Brief Overview
3 Fundamental Phenomena, Governing Equations, and Simulation Tools 3.1 Glass as a Continuum
3.2 Transport by Advection and Diffusion
3.3 Turbulence
3.4 Radiative Heat Transfer
3.5 Discretization Methods, Solution Algorithms, and Model Specifications 3.5.1 Finite Element and Control Volume Formulations
3.5.2 Physical and Numerical Specifications
4 Simulations in Glass Manufacturing Processes: A Few Examples 4.1 Fundamental Studies
4.2 Glass Melting Furnace 4.2.1 Models
4.2.2 Interacting Zones
4.2.3 Post‐processing Assessments
4.2.4 Particle Tracking
5 Simulation Data Management
6 Perspectives
4.2 Acknowledgements
References
Note
Страница 168
2.1 Basic Concepts of Network Glass Structure
1 Introduction
List of Acronyms
2 The Zachariasen–Warren Random Network Model
3 Silica – The Archetypal Glass
4 Microcrystalline Models
5 Modifiers and Non‐Bridging Oxygens 5.1 The Role of Network Modifiers
5.2 The Modified Random Network Model
5.3 Network Connectivity and Q‐species
5.4 Change of Coordination Number
6 Intermediate‐Range Order
7 Chalcogenide Glasses
8 Perspectives
Acknowledgements
References
Note
2.2 Structural Probes of Glass
1 Introduction
Acronyms
2 Diffraction (Scattering)
2.1 X‐ray and Neutron
2.2 Isotope‐substituted Neutron Diffraction
2.3 DAXS and AWAXS
3 X‐ray Absorption Techniques 3.1 General Features
3.2 EXAFS and XANES
4 Nuclear Magnetic Resonance Spectroscopy
5 Vibrational Spectroscopies 5.1 General Features
5.2 Infrared Spectroscopy
5.3 Raman Spectroscopy
5.4 Brillouin Spectroscopy
6 Other Techniques
6.1 Mössbauer Spectroscopy
6.2 X‐ray Photoelectron Spectroscopy
6.3 Ultra Violet/Visible Spectroscopy
7 Perspectives
Acknowledgements
References
Note
2.3 Microstructure Analysis of Glasses and Glass Ceramics
1 Introduction
2 Acronyms
2 Scanning Electron Microscopy 2.1 Image Formation
2.2 Chemical Analyses
2.3 Application to Glass Ceramics
3 Transmission Electron Microscopy 3.1 Conventional Observations
3.2 Scanning Transmission Electron Microscopy
3.3 Electron Energy Loss Spectroscopy
4 Scanning Probe Microscopy
5 X‐Ray Microscopy
6 Perspectives
Acknowledgments
References
Note
2.4 Short‐range Structure and Order in Oxide Glasses
1 Introduction
2 One‐component Oxide Glass Formers
3 Modifying the Network: Silicates and Phosphates
4 Modifying the Network: Borates and Germanates
5 Network Cations in Aluminosilicates
6 Short‐range Order and Modifier Cations
7 Interactions of Network Modifiers and Network Order/Disorder 7.1 Order and Disorder of Bridging and Non‐bridging Oxygens
7.2
Q
n
Speciation
7.3 Order/Disorder in Network Linkages
8 Perspectives
References
Note
2.5 The Extended Structure of Glass
1 Introduction
Acronyms
2 Extended Structure of Glass: The Need for a Multiplicity of Techniques
3 Structural Order over Different Length Scales 3.1 Network Glasses
3.2 Metallic Glasses
4 Structural Aspects of Density Fluctuations
4.1 Non‐ergodicity and Elastic Moduli
4.2 Polyamorphism and Phase Separation
5 Models of Glass Structure 5.1 Conceptual Models
5.2 Computational Modeling of Extended Structure
6 Structural Heterogeneity in Glasses
7 Perspectives
Acknowledgments
References
Note
2.6 Structure of Chemically Complex Silicate Systems
1 Introduction
2 Glass and Melt Polymerization
2.1 SiO
2
2.2 Al
2
O
3
3 Metal Oxide–SiO
2
Systems
3.1 General Remarks
3.2 Structure
3.3 Speciation, Cation Mixing, and Ordering
4 Aluminum and Aluminate
4.1 Al
3+
and
Q
n
‐Species
5 Ferric and Ferrous Iron
5.1 Redox Relations of Iron
5.2 Structural Roles of Fe
3+
and Fe
2+
5.3 Structure–Property Relations
6 Minor Components in Silicate Glasses and Melts
6.1 Phosphorus Substitution for Silicon
6.2 Multiple Roles of Ti
4+
7 Perspectives
References
Note
2.7 Topological Constraint Theory of Inorganic Glasses
1 Introduction
List of Acronyms
2 Concepts of the Topological Constraint Theory
2.1 Network Chemistry 2.1.1 Composition of an Atomic Network
2.1.2 Chemical Order and Disorder
2.1.3 Atomic Interactions and Chemical Bonds
2.1.4 Structural Units in Chemically Ordered Networks
2.2 Network Topology
2.3 Bond Constraints
2.4 Degrees of Freedom and the Network Deformation Modes
3 Polyhedral Constraint Theory
3.1 Rigidity of Polyhedral Structural Units
3.2 Existence of Topologically Disordered (
d
= 3) Networks
3.3 Glass‐forming Ability
3.3.1 Glass‐forming Ability and the Condition of Isostaticity (
f
= 0)
3.3.2 Glass Formation Under Hypostatic (
f
> 0) Conditions
3.3.3 Glass Formation Under Hyperstatic (
f
< 0) Conditions
3.4 Existence of Super‐Structural Units
4 The Bond Constraint Theory
4.1 Self‐organization and the Intermediate Phase
4.2 Non‐bridging Vertices (or Singly Coordinated Atoms)
4.3 Glass‐forming Ability in Chalcogenide Systems 4.3.1 Ge–Se System
4.3.2 As–Se System
4.4 Composition Variation of Properties in Glass‐forming Systems
5 Temperature‐Dependent Constraints 5.1 The Influence of Thermal Energy
5.2 Extension of the Topological Constraint Theory to Supercooled Liquids
5.3 Temperature – Scaling of Viscosity (
η
) and the MYEGA Equation
5.4 The Composition Variation of the Glass Transition Temperature,
T
g
5.5 Fragility (or Rigidity) Transitions and Iso‐
T
g
Regimes
6 Topological Constraint Theory, Thermodynamics, and the Potential Energy Landscape Formalism
7 Perspectives
Acknowledgements
References
Note
2.8 Atomistic Simulations of Glass Structure and Properties
1 Introduction
2 Basics of Numerical Simulations 2.1 General Features
2.2 The Importance of Interatomic Potentials
3 Monte‐Carlo Simulations 3.1 Principles of the Method
3.2 Reverse Monte‐Carlo Simulations
4 Molecular Dynamics Simulations
5 Modeling: Simulation Techniques and Examples 5.1 Overall Glass Structure
5.2 Short‐range Order
5.3 Medium‐range Order
5.4 Structure‐related Properties
5.5 Experimental and Computational Complementarity
6 Perspectives
References
Note
2.9 First‐principles Simulations of Glass‐formers
1 Introduction
2 Ab Initio Simulations 2.1 General Principles
2.2 Density Functional Theory
2.3 Computational Limitations
3 Structural Properties
4 Vibrational Properties
5 Calculations of NMR Spectra
6 Perspectives
References
Note
Section III. Physics of Glass
3.1 Glass Formation
1 Introduction
Acronyms
2 Glass and Relaxation
3 Kinetic Theory of Vitrification
4 The Viscosity Factor
5 Structural Factors
6 Glass‐Liquid Transition
7 Perspectives
Acknowledgements
References
Note
3.2 Thermodynamics of Glasses
1 Introduction
2 Basics of Nonequilibrium Thermodynamics
3 Supercooled Liquids
4 Glass as a Nonequilibrium Substance
5 Nonequilibrium Thermodynamics of the Glass Transition
6 Physical Aging
7 Perspectives
Acknowledgments
References
Note
{buyButton}
Подняться наверх