Читать книгу Microgrid Technologies - Группа авторов - Страница 17
1.2.3 Power and Heat Integration in Management System
ОглавлениеThe heat or thermal energy can be generated concurrently with electricity in HPC systems. The heat can be used for some other purposes such as space heating, water heating, etc. The efficiency can be enhanced with the help of HPC, in which the waste energy as heat is used for various thermal utilizations, therefore minimizing energy loss during distribution or transmission. The Cooling–Heating-Power-Combination (CHPC) is further called as tri-generation micro-grid. It is capable of providing heat, cooling and power to the consumer as required. In Ref. [16] an optimized model of a tri-generation micro-grid (CHPC) is discussed. In this case, the CHPC deals with the uncertainty of energy demand such as heating, cooling and electricity. An MSE for HPC of a GC Micro-grid optimally operates the grid and dispatches the HPC. The micro-grid supplies electrical and thermal energy requirements. In Ref. [17], the author discussed a management system of energy for HPC for a micro-grid connected to the grid, which can plan grid operation and HPC send-off optimally. The MG is taken as supply of electricity and thermal energy as required. The given methods have been concluded that V2G operation achieves a minimum rate of the objective function as compared to the operating strategies of MG with no V2G and the micro-grid with a conventional vehicle. A large-scale electric vehicle charging station is proposed in Ref. [11], where solar and wind energy is combined to supply the total power required. Here both arrays of solar panels and wind power generators work through a combined MPPT technique. The author combined the plug-in hybrid electric vehicle charger working in V2G mode with the distribution grid by the converters like rectifiers and choppers [12]. They are connected to the DC-link with the capacitor. This DC-link capacitor offers compensation of reactive power. So, this V2G charger is able to adjust the voltage of the grid by employing a capacitor at the link of dc. So, the problem of voltage drop can be avoided in the grid. This energy could be used to level the load and to shave the peak load. The authors presented an actual execution of EV charging station in the company, including an energy storing system like Li-polymer battery. The authors of Ref. [14] offered an idea about resiliency-based MSE for a micro-grid working in islanded condition. That case study was on a micro-grid consisting of PV farm, WT farm, and battery. The researchers applied 25 plug-in hybrid EC as the controllable design of supply and demand, which are optimized to show the conception of demand–supply relation. In V2G mode the plug-in EV can be considered as adjustable generation and in G2V mode the plug-in EV can be considered as adjustable demand. The authors of Ref. [15] discussed systematic management of energy for a smart home including plug-in EV (PEV) and PV panels to minimize costs during a time of use tariff, which supplies the home load and energy required to charge the PEV. A Li-ion battery is used in the PEV, which is controlled by a bidirectional converter. It allows power flow in both directions. Here the Markov Chain model is applied to design the mobility of PEV. The predictive model is used to design a home as a load and the dispersed power generation. This guaranties the cost-saving at the consumer’s end. The total power flow is managed by the proposed energy management system.