Читать книгу Space Physics and Aeronomy, Ionosphere Dynamics and Applications - Группа авторов - Страница 27

REFERENCES

Оглавление

1 Ahn, B.‐H., Akasofu, S.‐I., & Kamide, Y. (1983b). The joule heat production rate and the particle energy injection rate as a function of the geomagnetic indices AE and AL. Journal of Geophysical Research, 88, A8, 6275–6287.

2 Ahn, B. ‐H., Robinson, M. R., Kamide, Y., & Akasofu, S.‐I. (1983a). Electric conductivities, electric fields and auroral particle energy injection rate in the auroral ionosphere and their empirical relations to the horizontal magnetic disturbances. Planet. Space Sci. 31, 6, 641–653.

3 Akbari, H., Goodwin, L. V., Swoboda, J., St.‐Maurice, J.‐P., & Semeter, J. L. (2017). Extreme plasma convection and frictional heating of the ionosphere: ISR observations. Journal of Geophysical Research: Space Physics, 122, 7581– 7598. doi:10.1002/2017JA023916

4 Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., & Avellano, A., (2009). The DataAssimilation Research Testbed: A Community Facility. Bull. Amer. Meteor. Soc., 90, 1283– 1296, http://dx.doi.org/10.1175/2009BAMS2618.1

5 Araki, T., Schlegel, K., & Lühr, H. (1989). Geomagnetic effects of the Hall and Pedersen current flowing in the auroral ionosphere. Journal of Geophysical Research, 94, A12, 17185–17199.

6 Axford, W. I. (1969). Magnetospheric convection. Reviews of Geophysics., 7, 1, 421–459.

7 Axford, W. I., & Hines, C. O., A unifying theory of high‐latitude geophysical phenomena and geomagnetic storms. Canadian Journal of Physics, 39, 1433–1464.

8 Banks, P. M. (1977). Observations of joule and particle heating in the auroral zone. Journal of Atmospheric and Terrestrial Physics, 39, 179–193.

9 Banks, P. M., Foster, J. C., & Doupnik, J. R. (1981). Chatanika radar observations relating to the latitudinal and local time variations of Joule heating. Journal of Geophysical Research, 86, A8, 6869–6878.

10 Brekke, A. (1976). Electric fields, Joule and particle heating in the high latitude thermosphere. Journal of Atmospheric and Terrestrial Physics, 38, 887–895.

11 Bust, G. S., Garner, T. W., & Gaussiran, T. L., II (2004). Ionospheric Data Assimilation ThreeDimensional (IDA3D): A global, multi‐sensor, electron density specification algorithm. Journal of Geophysical Research, 109, A11312. doi:10.1029/2003JA010234

12 Chaston, C. C., et al. (2005). Energy deposition by Alfvén waves into the dayside auroral oval: Cluster and FAST observations. Journal of Geophysical Research, 110, A02211. doi:10.1029/2004JA010483

13 Chen, Y., et al. (2017). Global three‐dimensional simulation of Earth’s dayside reconnection using a two‐way coupled magnetohydrodynamics with embedded particle‐in‐cell model: Initial results. Journal of Geophysical Research, 122, 10,318– 10,335. https://doi.org/10.1002/2017JA024186

14 Codrescu, M. V., Fuller‐Rowell, T. J., & Foster, J. C. (1995). On the importance of E‐field variability for Joule heating in the high‐latitude thermosphere. Geophysical Research Letters., 22, 2393– 2396.

15 Codrescu, M. V., Fuller‐Rowell, T. J., Foster, J. C., Holt, J. M.,, & Cariglia, S. J. (2000). Journal of Geophysical Research. doi:10.1029/1999JA900463

16 Codrescu, M. V., Negrea, C., Fedrizzi, M., Fuller‐Rowell, T. J., Dobin, A., Jakowsky, N., Khalsa, H., et al. (2012). A real‐time run of the coupled thermosphere ionosphere plasmasphere electrodynamics (CTIPe) model. Space Weather, 10, S02001. doi:10.1029/2011SW000736

17 Cole, K. D. (1962). Joule heating of the upper atmosphere. Aus. J. Phys., 15, 223.

18 Cosgrove, R. B., & Codrescu, M. (2009). Electric field variability and model uncertainty: A classification of source terms in estimating the squared electric field from an electric field model. Journal of Geophysical Research, 114, A06301. doi:10.1029/2008JA013929

19 Cosgrove, R. B., Bahcivan, H., Chen, S., Strangeway, R. J., Ortega, J., Alhassan, M., Xu, Y., et al. (2014). Empirical model of Poynting flux derived from FAST data and a cusp signature. Journal of Geophysical Research, 119, 411– 430. doi:10.1002/2013JA019105.

20 Coumans, V., Gerard, J. C., Hubert, B., Meurant, M., & Mende, S. B. (2004). Global auroral conductance distribution due to electron and proton precipitation from IMAGE‐FUV observations. Annals of Geophysics, 22, 1595–1611.

21 Cousins, E. D. P., Matsuo, T., & Richmond, A. D. (2015). Mapping high‐latitude ionospheric electrodynamics with SuperDARN and AMPERE. Journal of Geophysical Research, 120, 5854–5870. doi:10. 1002/2014JA020463

22 Dickinson, R. E., Ridley, E. C., & Roble, R. G. (1981). A three dimensional general circulation model of the thermosphere. Journal of Geophysical Research, 86, 1499–1512.

23 Dickinson, R. E., Ridley, E. C., & Roble, R. G (1984). Thermospheric general circulation with coupled dynamics and composition. Journal of the Atmospheric Sciences, 41, 205–219.

24 Dods, J., Chapman, S. C., & Gjerloev, J. W. (2015). Network analysis of geomagnetic substorms using the SuperMAG database of ground‐based magnetometer stations. Journal of Geophysical Research, 120, 7774– 7784. doi:10.1002/2015JA021456

25 Dods, J., Chapman, S. C., & Gjerloev, J. W. (2017). Characterizing the ionospheric current pattern response to southward and northward IMF turnings with dynamical SuperMAG correlation networks. Journal of Geophysical Research, 122, 1883– 1902. doi:10.1002/2016JA023686

26 Dungey, J. W., Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6, 2, 47–48.

27 Frank, L. A., & Ackerson, K. L. (1971). Observations of charged particle precipitation into the auroral zone. Journal of Geophysical Research, 76, 3612–3643. doi:10.1029/JA076i016p03612

28 Fuller‐Rowell, T., Rees, D., Quegan, S., Moffett, R. J., Codrescu, M. V., & Millward, G. H. (1996). A coupled thermosphere‐ionosphere model (CTim). In R. W. Schunk (Ed.), STEP report (p. 217). Boulder, CO: Scientific Communications on Solar Terrestrial Physics.

29 Fuller‐Rowell, T. J., & Evans, D. S. (1987). Height‐integrated Pedersen and Hall conductivity patterns inferred from the TIROS‐NOAA satellite data. Journal of Geophysical Research,, 92, A7, 7606–7618.

30 Fuller‐Rowell, T. J., & Rees, D. (1980). A three‐dimensional, time dependent global model of the thermosphere. Journal of the Atmospheric Sciences, 37, 2545–2567.

31 Fuller‐Rowell, T. J., Codrescu, M. V., & Wilkinson, P. (2000). Quantitative modeling of the ionospheric response to geomagnetic activity. Annals of Geophysics, 18(7), 766–781. doi:10.1007/s00585‐000‐0766‐7

32 Fuller‐Rowell, T. J., Rees, D., Quegan, S., Moffett, R. J., & Bailey, G. J. (1988). Simulations of the seasonal and universal time variations of the high‐latitude thermosphere and ionosphere using a coupled, three‐dimensional model. Pure and Applied Geophysics, 127, 189–217. doi:10.1007/ BF00879811

33 Galand, M., & Richmond, A. D. (2001). Ionospheric electrical conductances produced by auroral proton precipitation. Journal of Geophysical Research, 106, A1, 117–125.

34 Gary, J. B., Heelis, R. A., Hanson, W. B., & Slavin, J. A. (1994). Field‐aligned Poynting flux observations in the high‐latitude ionosphere. Journal of Geophysical Research, 99(A6), 11,417–11,427. doi:10.1029/93JA03167

35 Gjerloev, J. W. & Hoffman, R. A. (2000). Height‐integrated conductivity in auroral substorms, 2. Modeling. Journal of Geophysical Research, 105, 227– 235.

36 Hajj, G. A., Wilson, B. D., Wang, C., Pi, X., & Rosen, I. G. (2004). Data assimilation of ground GPS total electron content into a physics‐based ionospheric model by use of the Kalman filter. Radio Sci.,39, RS1S05. doi:10.1029/2002RS002859

37 Hardy, D. A., Gussenhoven, M. S., Raistrick, R., & McNeil, W. J. (1987). Statistical and functional representations of the pattern of auroral energy flux, number flux, and conductivity. Journal of Geophysical Research, 92, 12275–12294.

38 Huang, C. Y., & Burke, W. J. (2004). Transient sheets of field‐aligned current observed by DMSP during the main phase of a magnetic superstorm. Journal of Geophysical Research, 209, A06303. doi:10.1029/2003JA010067

39 Huang, C. Y., et al. (2016). Ionosphere‐thermosphere (IT) response to solar wind forcing during magnetic storms. Journal of Space Weather and Space Climate, 6, A4. doi:10.1051/swsc/2015041

40 Huang, C. Y., Huang, Y., Su, Y.‐J., Hairston, M. R., & Sotirelis, T. (2017a). DMSP observations of high latitude Poynting flux during magnetic storms. Journal of Atmospheric and Solar‐Terrestrial Physics, 164, 294–307. doi:10.1016/jastp.2017.09.005

41 Huang, C. Y., Huang, Y., Su, Y.‐J., Huang, T., & Sutton, E. K. (2017b). High‐latitude neutral mass density maxima. Journal of Geophysical Research, 122, 10,694–10,711. doi.org/10.1002/2017JA024334

42 Huang, C. Y., Su, Y.‐J., Sutton, E. K., Weimer, D. R., & Davidson, R. L. (2014). Energy coupling during the August 2011 magnetic storm. Journal of Geophysical Research, 119, 1219–1232. doi:10.1002/2013JA019297

43 Kelley, M. C., Knudsen, D. J., & Vickrey, J. F. (1991). Poynting flux measurements on a satellite: A diagnostic tool for space research. Journal of Geophysical Research, 96(A1), 201–207. doi:10.1029/90JA01837

44 Khazanov, G. V., Glocer, A., & Himwich, E. W. (2014). Magnetosphere‐ionosphere energy interchange in the electron diffuse aurora. Journal of Geophysical Research, 119, 171– 184. doi:10.1002/2013JA019325

45 Knipp, D. J., Tobiska, W. K., & Emery, B. A. (2004). Direct and indirect thermospheric heating sources for solar cycles 21–23. Solar Physics, 224, 494–505. doi:10.1007/s11207‐005‐6393‐4

46 Liu, R., Lühr, H., & Ma, S.‐Y. (2010). Storm‐time related mass density anomalies in the polar cap as observed by CHAMP. Annals of Geophysics, 28(1), 165–180.

47 Lu, G., Lyons, L. R., Reiff, P. H., Denig, W. F., de la Beaujardiere, O., Kroehl, H. W., Newell, P. T., et al. (1995). Characteristics of ionospheric convection and field‐aligned current in the dayside cusp region. Journal of Geophysical Research, 100(A7), 11845–11862.

48 Lu, G., Richmond, A. D., Emery, B. A., & Roble, R. G. (1995). Magnetosphere‐ionosphere thermosphere coupling: Effect of neutral wind on energy transfer and field‐aligned current. Journal of Geophysical Research, 100(A10), 19,643–19,659. doi:10.1029/95JA00766

49 Lühr, H., Rother, M., Köhler, W., Ritter, P., & Grunwaldt, L. (2004). Thermospheric up‐welling in the cusp region: Evidence from CHAMP observations. Geophysical Research Letters, 31, L06805. doi:10.1029/2003GL019314

50 Lummerzheim, D., Rees, M. H., Craven, D. J., & Frank, L. A. (1991). Ionospheric conductances derived from DE‐1 auroral images. Journal of Atmospheric and Terrestrial Physics, 53, 281–292.

51 Lu, G., Richmond, A. D., Lühr, H., & Paxton, L. (2016). High‐latitude energy input and its impact on the thermosphere. Journal of Geophysical Research. doi:10.1002/2015JA022294

52 Lyon, J. G., Fedder, J. A., & Mobarry, C. M. (2004). The Lyon‐Fedder‐Mobarry (LFM) global MHD magnetospheric simulation code. Journal of Atmospheric and Solar‐Terrestrial Physics, 66, 1333–1350. doi:10.1016/j.jastp.2004.03.020

53 Maeda, K. (1977). Conductivity and drift in the ionosphere. Journal of Atmospheric and Terrestrial Physics, 39, 1041–1053.

54 Matsuo, T., & Richmond, A. D. (2008). Effects of high‐latitude ionospheric electric field variability on global thermospheric Joule heating and mechanical energy transfer rate. Journal of Geophysical Research, 113, A07309. doi:10.1029/2007JA012993

55 Matsuo, T., Knipp, D. J., Richmond, A. D., Kilcommons, L., & Anderson, B. J. (2015). Inverse procedure for high‐latitude ionospheric electrodynamics: Analysis of satellite‐borne magnetometer data. Journal of Geophysical Research, 120, 5241–5251. doi:10.1002/2014JA020565

56 McGranaghan, R., Knipp, D. J., & Matsuo, T. (2016). High‐latitude ionospheric conductivity variability in three dimensions. Geophysical Research Letters, 43, 7867– 7877. doi:10.1002/2016GL070253

57 McGranaghan, R., Knipp, D. J., Matsuo, T., & Cousins, E. (2016). Optimal interpolation analysis of high‐latitude ionospheric Hall and Pedersen conductivities: Application to assimilative ionospheric electrodynamics reconstruction. Journal of Geophysical Research, 121, 4898– 4923,doi:10.1002/2016JA022486

58 Merkin, V. G., & Lyon, J. G. (2010). Effects of the low‐latitude ionospheric boundary condition on the global magnetosphere. Journal of Geophysical Research, 115, A10202. doi:10.1029/2010JA015461

59 Newell, P. T., Burke, W. J., Sanchez, E. R., Meng, C.‐I., Greenspan, M. E., & Clauer, C. R. (1991). The low‐latitude boundary layer and the boundary plasma sheet at low altitude: Prenoon precipitation regions and convections reversal boundaries. Journal of Geophysical Research, 96(A12), 21,013–21,012. doi:10.1029/91JA01818

60 Newell, P. T., Wing, S., & Meng, C.‐I. (2005). Spectral properties and source regions of dayside electron acceleration events. Journal of Geophysical Research, 110, A11205. doi:10.1029/2005JA011264

61 Papitashvili, V., Clauer, C., Musko, S., Belov, B.,Troshichev, O., & Gudkov, M. (1996). Low‐magnitude, long‐period magnetic pulsations observed deep in the southern polar cap. Antarctic Journal of the United States, 31, 255–256.

62 Pi, X., Wang, C., Hajj, G. A., Rosen, G., Wilson, B. D., & Mannucci, A. J. (2004). Assimilative modeling of low‐latitude ionosphere. IEEE Proceedings Order Plans, 543–550.

63 Powell, K., Roe, P., Linde, T., Gombosi, T., & De Zeeuw, D. L. (1999). A solution‐adaptive upwind scheme for ideal magnetohydrodynamics. Journal of Computational Physics, 154, 284–309.

64 Raeder, J., Berchem, J., & Ashour‐Abdalla, M. (1998). The geospace environment grand challenge: Results from a global geospace circulation model. Journal of Geophysical Research, 103, 14787–14797.

65 Rastätter L., et al. (2016). GEM‐CEDAR challenge: Poynting flux at DMSP and modeled Joule heat. Space Weather, 14, 113–135. doi:10.1002/2015SW001238

66 Rees, D., Fuller‐Rowell, T. J., & Smith, R. W. (1980). Measurements of high latitude thermospheric winds by rocket and ground‐based techniques and their interpretation using a three‐dimensional time‐dependent dynamical model. Planetary and Space Science, 28, 919–932.

67 Richmond, A., Ridley, E. C., & Roble, R. G. (1992). A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophysical Research Letters., 19, 601–604. doi.org/10.1029/92GL00401

68 Richmond, A. D. (1992). Assimilative mapping of ionospheric electrodynamics. Advances in Space Research, 12(6), 659–668.

69 Richmond, A. D. (2010). On the ionospheric application of Poynting’s theorem. Journal of Geophysical Research. 115, A10311. doi:10.1029/2010JA015768

70 Richmond, A. D., & Kamide, Y. (1988). Mapping electrodynamic features of the high‐latitude ionosphere from localized observations: technique. Journal of Geophysical Research, 93, A6, 5741–5759.

71 Ridley, A. J., Deng, Y., & Toth, G. (2006). The global ionosphere‐thermosphere model. Journal of Atmospheric and Solar‐Terrestrial Physics, 68. doi:10.1016/j.jastp.2006.01.008

72 Ridley, A. J., Gombosi, T. I., & De Zeeuw, D. L. (2004). Ionospheric control of the magnetospheric configuration: Conductance. Annals of Geophysics, 22, 567–584.

73 Ridley, A. J., Lu, G., Clauer, C. R., & Papitashvili, V. O. (1997). Ionospheric convection during nonsteady interplanetary magnetic field conditions. Journal of Geophysical Research, 102(A7), 14563–14579.

74 Ritter, P., Lühr, H., Viljanen, A., Amm, O., Pulkkinen, A., & Sillanpää, I. (2004). Ionospheric currents estimated simultaneously from CHAMP satellite and IMAGE ground‐based magnetic field measurements: a statistical study at auroral latitudes. Annals of Geophysics, 22, 427–430.

75 Robinson, R. M., Vondrak, R. R., Miller, K., & Hardy, D. (1987). On calculating ionospheric conductance from the flux and energy of precipitating electrons. Journal of Geophysical Research, 92(A3), 2565–2569.

76 Roble, R., & Ridley, E., (1987). An auroral model for the NCAR thermospheric general circulation model (TGCM). Annals of Geophysics, 5A(6), 369–382.

77 Roble, R. G., Ridley, E. C., & Dickinson, R. E. (1987). On the global mean structure of the thermosphere. Journal of Geophysical Research, 92(A8), 8745–8758.

78 Scherliess, L., Schunk, R. W., Sojka, J. J., & Thompson, D. C. (2004). Development of a physics‐based reduced state Kalman filter for the ionosphere. Radio Science, 39, RS1S04. doi:10.1029/2002RS002797

79 Schunk, R. W. (2002). Global assimilation of ionospheric measurements (GAIM). Paper presented at Ionospheric Effects Symposium, Office of Naval Research, Alexandria, VA.

80 Shim, J. S., et al. (2012). CEDAR Electrodynamics Thermosphere Ionosphere (ETI) Challenge for systematic assessment of ionosphere/thermosphere models: Electron density, neutral density, NmF2, and hmF2 using space based observations. Space Weather, 10, S10004. doi:10.1029/2012SW000851

81 Shim, J. S., Rastaetter, L., Kuznetsova, M. M., Kalafatoglu, E. C., & Zheng, Y. (2015). Assessment of the predictive capability of IT models at the Community Coordinated Modeling Center. Proceedings of the 2015 IES.

82 Solomon, S. C., & Qian, L. (2005). Solar extreme‐ultraviolet irradiance for general circulation models. Journal of Geophysical Research, 110, A10306. doi:10.1029/2005JA011160

83 Spiro, R. W., Reiff, P. H., & Maher, L. J. (1982). Precipitating electron energy flux and auroral zone conductances – an empirical model. Journal of Geophysical Research, 87, 8215.

84 Streltsov, A. V., & Lotko, W., (2003). Reflection and absorption of Alfvenic power in the low‐altitude magnetosphere. Journal of Geophysical Research, 108, A4, 8016. doi:10.1029/2002JA009425

85 Thayer, J. P., & Semeter, J. (2004). The convergence of magnetospheric energy flux in the polar atmosphere. Journal of Atmospheric and Solar‐Terrestrial Physics, 66, 807–824.

86 Tobiska, W. K., et al. (2000). The SOLAR2000 empirical solar irradiance model and forecast tool. Journal of Atmospheric and Solar‐Terrestrial Physics, 62, 1233–1250. doi:10.1016/S1364‐6826(00)00070‐5

87 Toffoletto, F. R., Sazykin, S., Spiro, R. W., & Wolf, R. A. (2003). Modeling the inner magnetosphere using the Rice Convection Model (review). Space Science Reviews, WISER special issue, 107, 175– 196. doi:10.1023/A:1025532008047

88 Tóth, G., et al. (2005). Space Weather Modeling Framework: A new tool for the space science community. Journal of Geophysical Research, 110 (A12), A12226. doi:10.1029/2005JA011126

89 Tóth, G., et al. (2012). Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 231, 3, 870– 903. doi:10.1016/j.jcp.2011.02.006

90 Tóth, G., Chen, Y., Gombosi, T. I., Cassak, P., Markidis, S., & Peng, B. (2017). Scaling the ion inertial length and its implications for modeling reconnection in global simulations. Journal of Geophysical Research, 122. doi.org/10.1002/2017JA024189

91 Troshichev, O., Andersen, V. G., Vennerstrom, S., & Friis‐ChristensenvE. (1988). [title?] Planetary and Space Science, 36, 109

92 Tsurutani, B. T., GonzalezW. D., GonzalezA. L. C., Tang F., Arballo J. K., & Okada M. (1995). Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. Journal of Geophysical Research, 100(A11), 21,717–21,733.

93 Tsurutani, B. T., Gould, T., Goldstein, B. E., Gonzalez, W. D., & Sugiura, M. (1990). Interplanetary Alfven waves and auroral (substorm) activity: IMP 8. Journal of Geophysical Research, 95(A3), 2241–2252.

94 Urban, K. D., Gerrard, A. J., Lanzerotti, L. J., & Weatherwax, A. T. (2016). Rethinking the polar cap: Eccentric dipole structuring of ULF power at the highest corrected geomagnetic latitudes. Journal of Geophysical Research, 121, 8475–8507. doi:10.1002/2016JA022567

95 Vasyliunas, V. M., & Song, P. (2005). Meaning of ionospheric Joule heating. Journal of Geophysical Research, 110, A02301. doi:10.1029/2004JA020615

96 Verkhoglyadova, O. P., Meng, X., Mannucci, A. J., & McGranaghan, R. M. (2018). Semianalytical estimation of energy deposition in the ionosphere by monochromatic Alfvén waves. Journal of Geophysical Research, 123. doi:10/1029/2017JA25097

97 Wallis, D. D., & Budzinski, E. E. (1981). Empirical models of height integrated conductivities. Journal of Geophysical Research, 86, 125–138.

98 Wang, W., Wiltberger, M., Burns, A. G., Solomon, S. C., Killeen, T. L., Maruyama, N., & Lyon, J. G. (2004). Initial results from the coupled magnetosphere ionosphere thermosphere model: Thermosphere‐ionosphere responses. Journal of Atmospheric and Solar‐Terrestrial Physics, 66, 1425–1441,doi:10.1016/j.jastp.2004.04.008

99 Weimer, D. R. (1995). Models of high‐latitude electric potentials derived with a least error fit of spherical harmonic coefficients. Journal of Geophysical Research, 100. doi:10.1029/95jA01755

100 Weimer, D. R. (2001). Maps of field‐aligned currents as a function of the interplanetary magnetic field derived from Dynamics Explorer 2 data. Journal of Geophysical Research, 106, 12,889.

101 Weimer, D. R. (2005). Improved ionospheric electrodynamic models and application to calculating Joule heating rates. Journal of Geophysical Research, 110. doi:10.1029/2004JA010884

102 Wiltberger, M., Wang, W., Burns, A. G., Solomon, S. C., Lyon, J. G., & Goodrich, C. C. (2004). Initial results from the coupled magnetosphere ionosphere thermosphere model: Magnetospheric and ionospheric responses. Journal of Atmospheric and Solar‐Terrestrial Physics, 66, 1411–1423. doi:10.1016/j.jastp.2004.03.026

103 Wolf, R. A., Harel, M., Spiro, R. W., Voigt, G.‐H., Reiff, P. H., & Chen, C. K. (1982). Computer simulation of inner magnetospheric dynamics for the magnetic storm of July 29, 1977. Journal of Geophysical Research, 87, 5949– 5962.

104 Wolfe, A., Lanzerotti, L., Maclennan, C., & Weatherwax, A. (1996). Large‐amplitude hydromagnetic waves on open geomagnetic field lines. Antarctic Journal of the United States, 31, 257– 259.

105 Zmuda, A. J., Armstrong, J. C., & Heuring, F. T. (1970). Characteristics of transverse magnetic disturbances observed at 1,100 kilometers in the auroral oval. Journal of Geophysical Research, Space Physics, 75(25), 4757–4762.

Space Physics and Aeronomy, Ionosphere Dynamics and Applications

Подняться наверх