Читать книгу Biosurfactants for a Sustainable Future - Группа авторов - Страница 23
References
Оглавление1 1 IUPAC (1997). Compendium of Chemical Terminology. (the “Gold Book”), 2e (eds. A.D. McNaught and A. Wilkinson). Oxford: Blackwell. Online version created by Chalk. S. J. ISBN: 0‐9678550‐9‐8. (2019).
2 2 Taylor, H.J. and Alexander, J. (1944). The measurement of surface tension by means of sessile drops. Proc. Indian Acad. Sci., Math. Sci. 19: 149–158.
3 3 Vargaftik, N.B., Volkov, B.N., and Voljak, L.D. (1983). International tables of the surface tension of water. J. Phys. Chem. Ref. Data Monogr. 12: 817–820.
4 4 Jasper, J.J. (1972). The surface tension of pure liquid compounds. J. Phys. Chem. Ref. Data Monogr. 1: 841–1009.
5 5 Levey, M. (1954). The early history of detergent substances: A chapter in Babylonian chemistry. J. Chem. Educ. 31: 521–524.
6 6 Mayhoff, K.F.T. (ed.) (1906). Pliny the Elders, (AD 23–79) Naturalis Historia. Lipsiae: Teubner.
7 7 Hunt, J.A. (1999). A short history of soap. Pharm. J. (1 Dec.).
8 8 Campbell, M. 1858. Improved process of making soap. US Patent Office, Patent no. 19667.
9 9 Mitchell, R.W. (1927). Castile Soap‐a Monograph Covering the Origin, History and Significance. Boston: Brackett & Co.
10 10 Schulze, E.L. (1966). Literature of soaps and synthetic detergents. Lit. Chem. Technol.: 231–248.
11 11 Phanstiel, O. IV, Dueno, E., and Wang, Q.X. (1998). Synthesis of exotic soaps in the chemistry laboratory. J. Chem. Educ. 75: 612–614.
12 12 Kastens, M.L. and Ayo, J.J. Jr. (1950). Pioneer surfactant. Ind. Eng. Chem., 42: 1626–1638.
13 13 Kosswig, K. (2012). Surfactants. Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley VCH.
14 14 Kanno, S., Suzuki, A., Baba, H., and Hanzawa, Y. (1977). Structure of a Nekal‐type surfactant a ‐ commercial Twitchell reagent “Idrapidspalter”. Yukagaku 26: 789–791.
15 15 Bellon, J.L.M. & LeTellier, P.A. Surfactants. P.A. FR 881893 19430511 (1943).
16 16 Lucas, F.H. and Brown, A.H. (1950). Activity of wetting agents‐temperature effects. Food Technol. 4: 121–124.
17 17 Farn, R.J. (ed.) (2006). Chemistry and Technology of Surfactants. Oxford: Blackwell Publishing Ltd.
18 18 Attwood, D. and Florence, A.T. (2013). Surfactant Systems, Their Chemistry, Pharmacy and Biology. London: Chapman and Hall.
19 19 Meijide, F., Trillo, J.V., de Frutos, S. et al. (2013). Symbiotic and synergic effects in amide and ester derivatives of EDTA. In: EDTA: Synthesis, Uses and Environmental Concerns (ed. A. Molnar). Nova Publishers: New York.
20 20 Kaspar, F., Neubauer, P., and Gimpel, M. (2019). Bioactive secondary metabolites from Bacillus subtilis: a comprehensive review. J. Nat. Prod. 82: 2038–2053.
21 21 Zana, R. (2002). Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Adv. Colloid Interface Sci. 97: 205–253.
22 22 Zana, R. and Xia, J. (eds.) (2004). Gemini Surfactants. Synthesis, Interfacial and Solution ‐Phase Behavior, and Applications, Surfactants Science Series. New York: Dekker.
23 23 Fuhrhop, J.‐H. and Wang, T. (2004). Bolaamphiphiles. Chem. Rev. 104: 2901–2937.
24 24 Gouzy, M.‐F., Guidetti, B., Andre‐Barres, C. et al. (2001). Aggregation behavior in aqueous solutions of a new class of asymmetric bipolar Amphiphiles investigated by surface tension measurements. J. Colloid Interface Sci. 239: 517–521.
25 25 Guilbot, J., Benvegnu, T., Legros, N. et al. (2001). Efficient synthesis of unsymmetrical bolaamphiphiles for spontaneous formation of vesicles and disks with a transmembrane organization. Langmuir 17: 613–618.
26 26 Baccile, N., Delbeke, E.I.P., Brennich, M. et al. (2019). Asymmetrical, symmetrical, divalent, and Y‐shaped (bola)amphiphiles: the relationship between the molecular structure and self‐assembly in amino derivatives of Sophorolipid biosurfactants. J. Phys. Chem. B 123: 3841–3858.
27 27 Hofmann, A.F. and Mysels, K.J. (1988). Bile salts as biological surfactants. Colloids Surf. 30: 145–173.
28 28 Small, D.M. (1971). The physical chemistry of Cholanic acids. In: The Bile Acids, Chemistry, Physiology, and Metabolism (eds. P.P. Nair and D. Kritchevski). Plenum Press: New York.
29 29 Savage, P.B., Li, C., Taotafa, U. et al. (2002). Antibacterial properties of cationic steroid antibiotics. FEMS Microbiol. Lett. 217: 1–7.
30 30 Savage, P.B. (2002). Design, synthesis and characterization of cationic peptide and steroid antibiotics. Eur. J. Org. Chem. 759‐768.
31 31 Traube, I. (1940). The earliest history of capillary chemistry. J. Chem. Educ. 17: 324–329.
32 32 Guthrie, F. (1864). II. On drops. Proc. R. Soc. London, Ser. B 13: 444–457.
33 33 Guthrie, F. (1864). On drops. Part II. Proc. R. Soc. London, Ser. B 13: 457–483.
34 34 Musculus, C. (1864). Ueber die Veränderungen der Molecularcohäsion des Wassers (about the changes of the molecular cohesion of water). Chem. Zentralbl. 922.
35 35 Yadav, J.B. (2010). Advanced Practical Physical Chemistry. India: Krishna Prakashan Media.
36 36 Dorsey, N.E. (1926). Measurement of the surface tension. Sci. Paper 21: 563–595.
37 37 Tate, T. (1864). On the magnitude of a drop of liquid formed under different circumstances. Philos. Mag. 27: 176–180.
38 38 Milner, S.R. (1907). IV. On surface concentration, and the formation of liquid films. London, Edinburgh Dublin Philos. Mag. J. Sci. 13: 96–110.
39 39 Langmuir, I. (1917). The shapes of group molecules forming the surfaces of liquids. Proc. Natl. Acad. Sci. USA 3: 251–257.
40 40 Malfitano, G. (1909). On the properties of colloidal particles called micellae. Compt. Rend. 148: 1045.
41 41 Wyrouboff, G. (1901). Some remarks over the colloids. Bull. Soc. Chim. Fr. 25: 1016–1022.
42 42 McBain, J.W. and Salmon, C.S. (1920). Colloidal electrolytes. Soap solutions and their constitution. J. Am. Chem. Soc. 42: 426–460.
43 43 Laing, M.E. and McBain, J.W. (1920). Investigations of sodium oleate solutions in the three physical states of curd, gel and sol. J. Chem. Soc. Trans. 117: 1508–1528.
44 44 McBain, J.W. and Jenkins, W.J. (1922). Ultrafiltration of soap solutions. Sodium oleate and potassium laurate. J. Chem. Soc., Trans. 121: 2325–2344.
45 45 Grindley, J. and Bury, C.R. (1929). The densities of butyric acid–water mixtures. J. Chem. Soc.: 679–684.
46 46 Davies, D.G. and Bury, C.R. (1930). The partial specific volume of potassium octoate in aqueous solution. J. Chem. Soc.: 2263–2267.
47 47 Powney, J. and Addison, C.C. (1937). The properties of detergent solutions. II. The surface and interfacial tensions of aqueous solutions of alkyl sodium sulfates. Trans. Faraday Soc. 33: 1243–1253.
48 48 Krafft, F. and Wiglow, H. (1895). Behaviour of the alkali salts of the fatty acids and of soaps in presence of water. Ber. Dtsch. Chem. Ges. 28: 2566–2573, 2573–2582.
49 49 Hutchinson, E., Inaba, A., and Baley, L.G. (1955). The properties of colloidal electrolyte solutions. Z. Phys. Chem. 5: 344–371.
50 50 Shinoda, K. and Hutchinson, E. (1962). Pseudo‐phase separation model for thermodynamic calculations on micellar solutions. J. Phys. Chem. 66: 577–582.
51 51 Nilsson, G. (1957). The adsorption of Tritiated sodium dodecyl sulfate at the solution surface measured with a windowless, high humidity gas flow proportional counter. J. Phys. Chem. 57: 1135–1142.
52 52 Allen, G.D. (1915). The determination of the bile salts in urine by means of the surface tension method. J. Biol. Chem. 22: 505–524.
53 53 Reis, S., Guimaraes Moutinho, C., Matos, C. et al. (2004). Noninvasive methods to determine the critical micelle concentration of some bile acid salts. Anal. Biochem. 334: 117–126.
54 54 Atkins, P.W. and de Paula, J. (2002). Physical Chemistry, 7e. Oxford: Oxford University.
55 55 Menger, F.M., Shi, L., and Rizvi, S.A.A. (2009). Re‐evaluating the Gibbs analysis of surface tension at the air/water Interface. J. Am. Chem. Soc. 131: 10380–10381.
56 56 Menger, F.M. and Rizvi, S.A.A. (2011). Relationship between surface tension and surface coverage. Langmuir 27: 13975–13977.
57 57 Li, P.X., Thomas, R.K., and Penfold, J. (2014). Limitations in the use of surface tension and the Gibbs equation to determine surface excesses of cationic surfactants. Langmuir 30: 6739–6747.
58 58 Xu, H., Li, P.X., Ma, K. et al. (2013). Limitations in the application of the Gibbs equation to anionic surfactants at the air/water surface: Sodium dodecylsulfate and sodium dodecylmonooxyethylenesulfate above and nelow the CMC. Langmuir 29: 9335–9351.
59 59 Tartar, H.V. and Wright, K.A. (1939). Sulfonates. III. Solubilities, micelle formation and hydrates of the sodium salts of the higher alkyl sulfonates. J. Am. Chem. Soc. 61: 539–544.
60 60 Wright, K.A. and Tartar, H.V. (1939). Studies of sulfonates. IV. Densities and viscosities of sodium dodecyl sulfonate solutions in relation to micelle formation. J. Am. Chem. Soc. 61: 544–549.
61 61 Wright, K.A., Abbott, A.D., Sivertz, V., and Tartar, H.V. (1939). Sulfonates. V. Electrical conductance of sodium decyl‐, dodecyl‐ and hexadecyl‐sulfonate solutions at 40°, 60° and 80°. Micelle formation. J. Am. Chem. Soc. 61: 549–551.
62 62 Hartley, G.S. (1936). Critical concentration for micelles in solutions of cetanesulfonic acid. J. Am. Chem. Soc. 58: 2347–2354.
63 63 Hartley, G.S. (1939). Ion aggregation in solutions of salts with long paraffin chains. Kolloidn. Zh. 88: 22–40.
64 64 Corrin, M.L. and Harkins, W.D. (1947b). The effect of salts on the critical concentration for the formation of micelles in colloidal electrolytes. J. Am. Chem. Soc. 67: 683–688.
65 65 Lange, H. (1950). Application of the law of mass action to micelle formation in colloidal electrolytes. Kolloidn. Zh. 117: 48–51.
66 66 Hall, D.G. (1981). Thermodynamics of solutions of polyelectrolytes, ionic surfactants, and other charged colloidal system. J. Chem. Soc. Faraday Trans. 1 (77): 1121–1156.
67 67 Corrin, M.L. and Harkins, W.D. (1946a). The effect of solvents on the critical concentration for micelle formation of cationic soaps. J. Chem. Phys. 14: 640–641.
68 68 Herzfeld, S.H., Corrin, M.L., and Harkins, W.D. (1950). The the effect of alcohols and of alcohols and salts on the critical micelle concentration of dodecylammonium chloride. J. Phys. Colloid Chem. 54: 271–283.
69 69 Reichenberg, D. (1947). Colloidal crystallites and micelles. I. The micelle in solution. Apparent anomalies in the surface‐ and interfacial‐tension‐concentration curves of aqueous solutions of paraffin‐chain salts. Trans. Faraday Soc. 43: 467–479.
70 70 Klevens, H.B. (1947a). Effects of temperature on the critical concentrations of anionic and cationic detergents. J. Phys. Chem. 51: 1143–1154.
71 71 Klevens, H.B. (1947b). Effect of temperature on micelle formation as determined by refraction. J. Colloid Sci. 2: 301–303.
72 72 Sheppard, S.E. and Geddes, A.L. (1945). Amphipathic character of proteins and certain lyophile colloids as indicated by absorption spectra of dyes. J. Chem. Phys. 13: 63.
73 73 Corrin, M.L., Klevens, H.B., and Harkins, W.D. (1946). Critical concentration for the formation of micelles as indicated by the absorption spectrum of a cyanine dye. J. Chem. Phys. 14: 216–217.
74 74 Klevens, H.B. (1946). The critical micelle concentration of anionic soap mixtures. J. Chem. Phys. 14: 742.
75 75 Corrin, M.L., Klevens, H.B., and Harkins, W.D. (1946.a). The determination of critical concentrations for the formation of soap micelles by the spectral behavior of pinacyanol chloride. J. Chem. Phys. 14: 480–486.
76 76 Kolthoff, I.M. and Johnson, W.F. (1946). Solubilization of p‐dimethylaminoazobenzene in soap solutions. J. Phys. Chem. 50: 440–442.
77 77 Corrin, M.L. and Harkins, W.D. (1946). Determination of critical concentrations for micelle formation in solutions of cationic soaps by changes in the color and fluorescence of dyes. J. Chem. Phys. 14: 641.
78 78 Corrin, M.L. and Harkins, W.D. (1947). Determination of the critical concentration for micelle formation in solutions of colloidal electrolytes by the spectral change of a dye. J. Am. Chem. Soc. 69: 679–683.
79 79 Klevens, H.B. (1950). Solubilization of polycyclic hydrocarbons. J. Phys. Colloid Chem. 54: 283–298.
80 80 Ekwall, P. (1951). Micelle formation in sodium cholate solutions. Acta Acad. Abo., Ser. B 17: 1–10.
81 81 Foerster, T. and Selinger, B. (1964). Concentration change of the fluorescence of aromatic hydrocarbons in micellar colloidal solution. Z. Naturforsch. 19a: 38–41.
82 82 Dorrance, R.C. and Hunter, T.F. (1974). Absorption and emission studies of solubilization in micelles. 2. Determination of aggregation numbers and solubilizate diffusion in cationic micelles. J. Chem. Soc. Faraday Trans. 1 (70): 1572–1580.
83 83 Chen, M. and Graetzel, J.K. (1974). Thomas, photochemical reactions in micelles of biological importance. Chem. Phys. Lett. 24.
84 84 Geiger, M.W. and Turro, N.J. (1975). Pyrene fluorescence lifetime as a probe for oxygen penetration of micelles. Photochem. Photobiol. 22: 273–276.
85 85 Kalyanasundaram, K. and Thomas, J.K. (1977). Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J. Am. Chem. Soc. 99: 2039–2044.
86 86 Nakajima, A. (1977). Variations in the vibrational structures of fluorescence spectra of naphthalene and pyrene in water and in aqueous surfactant solutions. Bull. Chem. Soc. Jpn. 50: 2473–2474.
87 87 Acharya, D.P., Kunieda, H., Shiba, Y., and Aratani, K. (2004). Phase and rheological behavior of novel gemini‐type surfactant systems. J. Phys. Chem. B 108: 1790–1797.
88 88 Jover, A., Meijide, F., Rodríguez Núñez, E. et al. (1996). Unusual pyrene excimer formation during sodium deoxycholate gelation. Langmuir 12: 1789–1793.
89 89 Hashimoto, S. and Thomas, J.K. (1984). Photophysical studies of pyrene in micellar sodium taurocholate at high salt concentrations. J. Colloid Interface Sci. 102: 152–163.
90 90 Andersson, B. and Olofsson, G. (1988). Calorimetric study of nonionic surfactants: enthalpies and heat‐capacity changes for micelle formation in water of C8E4 and Triton X‐100 and micelle size of C8E4. J. Chem. Soc. Faraday Trans. 1 (84): 4087–4095.
91 91 Chung, H.S. and Heilweil, I.J. (1970). Statistical treatment of micellar solutions. J. Phys. Chem. 74: 488–494.
92 92 Paula, S., Sues, W., Tuchtenhagen, J., and Blume, A. (1995). Thermodynamics of micelle formation as a function of temperature: A high sensitivity titration calorimetry study. J. Phys. Chem. 99: 11742–11751.
93 93 Aguiar, J., Carpena, P., Molina‐Bolivar, J.A., and Carnero Ruiz, C. (2003). On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. J. Colloid Interface Sci. 258: 116–122.
94 94 Rusanov, A.I. (1993). The mass action law theory of micellar solutions. Adv. Colloid Interface Sci. 45: 1–78.
95 95 Phillips, J.N. (1955). Energetics of micelle formation. Trans. Faraday Soc. 51: 561–569.
96 96 Olesen, N.E., Holm, R., and Westh, P. (2015). Determination of the aggregation number for micelles by isothermal titration calorimetry. Thermochim. Acta 588: 28–37.
97 97 Olofsson, G. and Loh, W. (2009). The use of titration calorimetry to study the association of surfactants in aqueous solutions. J. Braz. Chem. Soc. 20: 577–593.
98 98 Hall, D.G. (1972). Exact phenomenological interpretation of the micelle point in multicomponent systems. J. Chem. Soc. Faraday Trans. 2 (68): 668–679.
99 99 Goodeve, C.F. (1935). General discussion on “equilibrium between micelles and simple ions, with particular reference to the solubility of long‐chain salts. Discussion on equilibrium between micelles and simple ions, with particular reference to the solubility of long‐chain salts”. Trans. Faraday Soc. 31: 197–198.
100 100 Vázquez‐Tato, M.P., Meijide, F., Seijas, J.A. et al. (2018). Analysis of an old controversy: The compensation temperature for micellization of surfactants. Adv. Colloid Interface Sci. 254: 94–98.
101 101 Gill, S.J., Nichols, N.F., and Wadsö, I. (1976). Calorimetric determination of enthalpies of solution of slightly soluble liquids. II. Enthalpy of solution of some hydrocarbons in water and their use in establishing the temperature dependence of their solubilities. J. Chem. Thermodyn. 8: 445–452.
102 102 Gill, S.J., Dec, S.F., Olofsson, G., and Wadsö, I. (1985). Anomalous heat capacity of hydrophobic solvation. J. Phys. Chem. 89: 3758–3761.
103 103 Crutzen, J.L., Hasse, R., and Sieg, L. (1950). Vapor equilibrium and heat of mixing in the systems cyclohexane‐heptane and methylcyclohexane‐heptane. Z. Naturforsch., B: J. Chem. Sci. 5a: 600–604.
104 104 Jolicoeur, C. and Philip, P.R. (1974). Enthalpy–entropy compensation for micellization and other hydrophobic interactions in aqueous solutions. Can. J. Chem. 52: 1834–1839.
105 105 Pan, A., Kar, T., Rakshit, A.K., and Moulik, S.P. (2016). Enthalpy–entropy compensation (EEC) effect: decisive role of free energy. J. Phys. Chem. B 120: 10531–10539.
106 106 Sugihara, G., Nakano, T.‐Y., Sulthana, S.B., and Rakshit, A.K. (2001). Enthalpy–entropy compensation rule and the compensation temperature observed in micelle formation of different surfactants in water. What is the so‐called compensation temperature? J. Oleo Sci. 50: 29–39.
107 107 Debye, P. (1947). Molecular weight determination by light scattering. J. Phys. Chem. 51: 18–32.
108 108 Debye, P. (1949). Light scattering in soap solutions. J. Phys. Colloid Chem. 53: 1–8.
109 109 Tartar, H.V. and Lelong, A.L.M. (1955). Micellar molecular weights of some paraffin‐chain salts by light scattering. J. Phys. Chem. 59: 1185–1190.
110 110 Turro, N.J. and Yekta, A. (1978). Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles. J. Am. Chem. Soc. 100: 5951–5952.
111 111 Biltz, H. (1899). Practical Methods for Determining Molecular Weights. Easton: The Chemical Publishing Company.
112 112 Krafft, F. (1896). A theory of colloidal solutions. Ber. Dtsch. Chem. Ges. 29: 1334–1344.
113 113 Kahlenberg, L. and Schreiner, O. (1898). The aqueous solutions of the soaps. Z. Phys. Chem. 27: 552–566.
114 114 Botazzi, F. and d'Errico, G. (1906). Physico‐chemical investigations of glycogen. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 115: 359–386.
115 115 McBain, J.W., Laing, M.E., and Titley, A.F. (1919). Colloidal electrolytes. Soap solutions as a type. J. Chem. Soc., Trans. 115: 1279–1300.
116 116 McBain, J.W. and Betz, M.D. (1935). The predominant role of association in the dissociation of simple straight‐chain sulfonic acids in water. II. Freezing point. J. Am. Chem. Soc. 57: 1909–1912.
117 117 Johnston, S.A. and McBain, J.W. (1942). Freezing‐points of solutions of typical colloidal electrolytes; soaps, sulphonates, sulphates and bile salt. Proc. R. Soc. London, Ser. A 181 (985): 119–133.
118 118 Gonick, E. and McBain, J.W. (1947). Cryoscopic evidence for micellar association in aqueous solutions of nonionic detergents. J. Am. Chem. Soc. 69: 334–336.
119 119 Herrington, T.M. and Sahi, S.S. (1986). Temperature dependence of the micellar aggregation number of aqueous solutions of sucrose monolaurate and sucrose monooleate. Colloids Surf. 17: 103–113.
120 120 Burchfield, T.E. and Woolley, E.M. (1984). Model for thermodynamics of ionic surfactant solutions. 1. Osmotic and activity coefficients. J. Phys. Chem. 88: 2149–2155.
121 121 Coello, A., Meijide, F., Rodríguez Núñez, E., and Vázquez Tato, J. (1993). Aggregation behavior of sodium cholate in aqueous solution. J. Phys. Chem. 97: 10186–10191.
122 122 Coello, A., Meijide, F., Rodríguez Núñez, E., and Vázquez Tato, J. (1996). Aggregation behavior of bile salts in aqueous solution. J. Pharm. Sci. 85: 9–15.
123 123 Nagarajan, R. (1994). On interpreting fluorescence measurements: what does thermodynamics have to say about change in Micellar aggregation number versus change in size distribution induced by increasing concentration of the surfactant in solution? Langmuir 10: 2028–2034.
124 124 Israelachvili, J.N., Mitchell, D.J., and Ninham, B.W. (1976). Theory of self‐assembly of hydrocarbon amphiphile into micelles and bilayers. J. Chem. Soc. Faraday Trans. 2 (72): 1525–1568.
125 125 Israelachvili, J. (2011). Intermolecular and Surface Forces, 3e. Santa Barbara, CA: Academic Press.
126 126 Rusanov, A.I. (2014). The mass‐action‐law theory of micellization revisited. Langmuir 30: 14443–14451.
127 127 Hoffmann, H. (2012). Structure formation in surfactant solutions. A personal view of 35 years of research in surfactant science. Adv. Colloid Interface Sci. 178: 21–33.
128 128 Hall, D.G. and Wyn‐Jones, E. (1986). Chemical relaxation spectrometry in aqueous surfactant solutions. J. Mol. Liq. 32: 63–82.
129 129 Finholt, J.E. (1968). The temperature‐jump method for the study of fast reactions. J. Chem. Educ. 45: 394.
130 130 Kresheck, G.C., Hamori, E., Davenport, G., and Scheraga, H.A. (1966). Determination of the dissociation rate of dodecylpyridinium iodide micelles by a temperature‐jump technique. J. Am. Chem. Soc. 88: 246–253.
131 131 Folger, R., Hoffmann, H., and Ulbricht, W. (1974). Mechanism of the formation of micelles in sodium dodecyl sulfate (SDS) solutions. Ber. Bunsenges. 78: 986–997.
132 132 Inoue, T., Tashlro, R., Shlbuya, Y., and Shimozawa, R. (1978). Chemical relaxation studies in micellar solutions of dodecylpyridinium halides. J. Phys. Chem. 82: 2037.
133 133 Lang, J., Tondre, C., Zana, R. et al. (1975). Chemical relaxation studies of micellar equilibria. J. Phys. Chem. 79: 276–283.
134 134 Platz, G. (1979). The kinetics of micelle formation. NATO Adv. Study Inst. Ser., Ser. C C50: 239–248.
135 135 Aniansson, E.A.G. and Wall, S.N. (1974). Kinetics of step‐wise micelle association. J. Phys. Chem. 78: 1024–1030.
136 136 Kaatze, U. (2011). Kinetics of micelle formation and concentration fluctuations in solutions of short‐chain surfactants. J. Phys. Chem. B 115: 10470–10477.
137 137 Teubner, M. (1979). Theory of ultrasonic absorption in micellar solutions. J. Phys. Chem. 83: 2917–2920.
138 138 Telgmann, T. and Kaatze, U. (1997). On the kinetics of the formation of small micelles. 1. Broadband ultrasonic absorption spectrometry. J. Phys. Chem. B 101: 7758–7765.
139 139 Telgmann, T. and Kaatze, U. (1997). On the kinetics of the formation of small micelles. 2. Extension of the model of stepwise association. J. Phys. Chem. B 101: 7766–7772.
140 140 Haller, J. and Kaatze, U. (2009). Ultrasonic spectrometry of aqueous solutions of alkyl maltosides: kinetics of micelle formation and head‐group isomerization. ChemPhysChem 10: 2703–2710.
141 141 Reiss‐Husson, F. and Luzzati, V. (1964). The structure of the micellar solutions of some amphiphilic compounds in pure water as determined by absolute small‐angle X‐ray scattering techniques. J. Phys. Chem. 68: 3504–3511.
142 142 Hayashi, S. and Ikeda, S. (1980). Micelle size and shape of sodium dodecyl sulfate in concentrated sodium chloride solutions. J. Phys. Chem. 84: 744–751.
143 143 Coello, A., Meijide, F., Mougan, M.A. et al. (1995). Spherical and rod SDS micelles. J. Chem. Educ. 72: 73–75.
144 144 Tanford, C. (1972). Micelle shape and size. J. Phys. Chem. 76: 3020–3024.
145 145 Aniansson, E.A.G., Wall, S.N., Almgren, M. et al. (1976). Theory of the kinetics of micellar equilibria and quantitative interpretation of chemical relaxation studies of micellar solutions of ionic surfactants. J. Phys. Chem. 80: 905–922.
146 146 Jung, H.T., Coldren, B., Zasadzinski, J.A. et al. (2001). The origins of stability of spontaneous vesicles. Proc. Natl. Acad. Sci. U. S. A. 98: 1353–1357.
147 147 Coldren, B., Van Zanten, R., Mackel, M.J. et al. (2003). From vesicle size distributions to bilayer elasticity via cryo‐transmission and freeze‐fracture electron microscopy. Langmuir 19: 5632–5639.
148 148 Terech, P. and Talmon, Y. (2002). Aqueous suspensions of steroid nanotubules: structural and rheological characterizations. Langmuir 18: 7240–7244.
149 149 Meijide, F., Trillo, J.V., de Frutos, S. et al. (2012). Formation of tubules by p‐tert‐butylphenylamide derivatives of chenodeoxycholic and ursodeoxycholic acids in aqueous solution. Steroids 77: 1205–1211.
150 150 Soto, V.H., Jover, A., Meijide, F. et al. (2007). Supramolecular structures generated by a p‐tert‐butylphenyl‐amide derivative of cholic acid. From vesicles to molecular tubes. Adv. Mater. 19: 1752–1756.
151 151 Menger, F.M. and Littau, C.A. (1991). Gemini‐surfactants: Synthesis and properties. J. Am. Chem. Soc. 113: 1451–1452.
152 152 Menger, F.M. and Littau, C.A. (1993). Gemini surfactants: A new class of self‐assembling molecules. J. Am. Chem. Soc. 115: 10083–10090.
153 153 Peresypkin, A.V. and Menger, F.M. (1999). Zwitterionic Geminis. Coacervate formation from a single organic compound. Org. Lett. 1: 1347–1350.
154 154 Nitschke, M. and Pastore, G.M. (2002). Biosurfactants: Properties and applications. Quim. Nova 25: 772–776.
155 155 Otzen, D.E. (2017). Biosurfactants and surfactants interacting with membranes and proteins: Same but different? Biochim. Biophys. Acta 1859: 639–649.
156 156 Rosenberg, E. and Ron, E.Z. (1999). High‐ and low‐molecular‐mass microbial surfactants. Appl. Microbiol. Biotechnol. 52: 154–162.
157 157 Mnif, I. and Dhouha, G. (2015). Lipopeptide surfactants: Production, recovery and pore forming capacity. Peptides 71: 100–112.
158 158 Sałek, K. and Euston, S.R. (2019). Sustainable microbial biosurfactants and bioemulsifiers for commercial exploitation. Process Biochem. 85: 143–155.
159 159 Ishigami, Y. and Suzuki, S. (1997). Development of biochemicals‐functionalization of biosurfactants and natural dyes. Prog. Org. Coat. 31: 51–61.
160 160 Matsuoka, K., Miyajima, R., Ishida, Y. et al. (2016). Aggregate formation of glycyrrhizic acid. Colloids Surf., A 500: 112–117.
161 161 Garofalakis, G., Murray, B.S., and Sarney, D.B. (2000). Surface activity and critical aggregation concentration of pure sugar esters with different sugar head groups. J. Colloid Interface Sci. 229: 391–398.
162 162 Goueth, P.Y., Gogalis, P., Bikanga, R. et al. (1994). Synthesis of monoesters as surfactants and drugs from D‐glucose. J. Carbohydr. Chem. 13: 249–272.
163 163 Sarney, D.B. and Vulfson, E.N. (1995). Application of enzymes to the synthesis of surfactants. Trends Biotechnol. 13: 164–172.
164 164 Saini, H.S., Barragan‐Huerta, B.E., Lebron‐Paler, A. et al. (2008). Efficient purification of the biosurfactant viscosin from Pseudomonas libanensis strain M9‐3 and its physicochemical and biological properties. J. Nat. Prod. 71: 1011–1015.
165 165 Laycock, M.V., Hildebrand, P.D., Thibault, P. et al. (1991). Viscosin, a potent peptidolipid biosurfactant and phytopathogenic mediator produced by a pectolytic strain of Pseudomonas fluorescens. J. Agric. Food Chem. 39: 483–489.
166 166 Neu, T.R., Haertner, T., and Poralla, K. (1990). Surface active properties of viscosin: A peptidolipid antibiotic. Appl. Microbiol. Biotechnol. 32: 518–520.
167 167 Banipal, P.K., Banipal, T.S., Lark, B.S., and Ahluwalia, J.C. (1997). Partial molar heat capacities and volumes of some mono‐, di‐ and tri‐saccharides in water at 298.15, 308.15 and 318.15 K. J. Chem. Soc. Faraday Trans. 93: 81–87.
168 168 Varga, I., Mészáros, R., Stubenrauch, C., and Gilányi, T. (2012). Adsorption of sugar surfactants at the air/water interface. J. Colloid Interface Sci. 379: 78–83.
169 169 Ribeiro, I.A.C., Faustino, C.M.C., Guerreiro, P.S. et al. (2015). Development of novel sophorolipids with improved cytotoxic activity toward MDA‐MB‐231 breast cancer cells. J. Mol. Recognit. 28: 155–165.
170 170 Angarten, R.G. and Loh, W. (2014). Thermodynamics of micellization of homologous series of alkyl mono and di‐glucosides in water and in heavy water. J. Chem. Thermodyn. 73: 218–223.
171 171 Gill, S.J. and Wadsö, I. (1976). An equation of state describing hydrophobic interactions. Proc. Natl. Acad. Sci. U. S. A. 73: 2955–2958.
172 172 Majhi, P.R. and Blume, A. (2001). Thermodynamic vharacterization of temperature‐induced micellization and demicellization of detergents studied by differential scanning calorimetry. Langmuir 17: 3844–3851.
173 173 Chen, M., Penfold, J., Thomas, R.K. et al. (2010). Mixing behavior of the biosurfactant, rhamnolipid, with a conventional anionic surfactant, sodium dodecyl benzene sulfonate. Langmuir 26: 17958–17968.
174 174 Chen, M., Penfold, J., Thomas, R.K. et al. (2010). Solution self‐assembly and adsorption at the air−water interface of the monorhamnose and dirhamnose rhamnolipids and their mixtures. Langmuir 26: 18281–18292.
175 175 Ishigami, Y., Gama, Y., Nagahora, H. et al. (1987). The pH‐sensitive conversion of molecular aggregates of rhamnolipid biosurfactant. Chem. Lett.: 16(5):763–16(5):766.
176 176 Whang, L.‐M., Liu, P.‐W.G., Ma, C.‐C., and Cheng, S.‐S. (2008). Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel‐contaminated water and soil. J. Hazard. Mater. 151: 155–163.
177 177 Onaizi, S.A., Nasser, M.S., and Twaiq, F.A. (2012). Micellization and interfacial behavior of a synthetic surfactant‐biosurfactant mixture. Colloids Surf., A 415: 388–393.
178 178 Otto, R.T., Daniel, H.‐J., Pekin, G. et al. (1999). Production of sophorolipids from whey. II. Product composition, surface active properties, cytotoxicity and stability against hydrolases by enzymatic treatment. Appl. Microbiol. Biotechnol. 52: 495–501.
179 179 Chen, M., Dong, C., Penfold, J. et al. (2011). Adsorption of sophorolipid biosurfactants on their own and mixed with sodium dodecyl benzene sulfonate, at the air/water interface. Langmuir 27: 8854–8866.
180 180 Ashby, R.D., Solaiman, D.K.Y., and Foglia, T.A. (2008). Property control of sophorolipids: Influence of fatty acid substrate and blending. Biotechnol. Lett. 30: 1093–1100.
181 181 Rosen, M.J., Mathias, J.H., and Davenport, L. (1999). Aberrant aggregation behavior in cationic gemini surfactants investigated by surface tension, interfacial tension, and fluorescence methods. Langmuir 15: 7340–7346.
182 182 Rosen, M.J., Cohen, A.W., Dahanayake, M., and Hua, X.Y. (1982). Relationship of structure to properties in surfactants. 10. Surface and thermodynamic properties of 2‐dodecyloxypoly(ethenoxyethanol)s, C12H25(OC2H4)xOH, in aqueous solution. J. Phys. Chem. 86: 541–545.
183 183 Bakshi, M.S., Singh, K., Kaur, G. et al. (2006). Spectroscopic investigation on the hydrophobicity in the mixtures of nonionic plus twin tail alkylammonium bromide surfactants. Colloids Surf., A 278: 129–139.
184 184 Chen, L.‐J., Lin, S.‐Y., Huang, C.‐C., and Chen, E.‐M. (1998). Temperature dependence of critical micelle concentration of polyoxyethylenated non‐ionic surfactants. Colloids Surf., A 135: 175–181.
185 185 Sulthana, S.B., Bhat, S.G.T., and Rakshit, A.K. (1997). Studies of the effect of additives on the surface and thermodynamic properties of poly(oxyethylene(10)) lauryl ether in aqueous solution. Langmuir 13: 4562–4568.
186 186 Tyrode, E., Johnson, C.M., Kumpulainen, A. et al. (2005). Hydration state of nonionic surfactant monolayers at the liquid/vapor interface: Structure determination by vibrational sum frequency spectroscopy. J. Am. Chem. Soc. 127: 16848–16859.
187 187 Tyrode, E., Johnson, C.M., Rutland, M.W., and Claesson, P.M. (2007). Structure and hydration of poly(ethylene oxide) surfactants at the air /liquid interface. A vibrational sum frequency spectroscopy study. J. Phys. Chem. C 111: 11642–11652.
188 188 Kumpulainen, A.J., Persson, C.M., Eriksson, J.C. et al. (2005). Soluble monolayers of n‐decyl glucopyranoside and n‐decyl maltopyranoside. Phase changes in the gaseous to the liquid‐expanded range. Langmuir 21: 305–315.
189 189 Gorin, P.A.J., Spencer, J.F.T., and Tulloch, A.P. (1961). Hydroxy fatty acid glycosides of sophorose from Torulopsis magnoliae. Can. J. Chem. 39: 846–855.
190 190 Ozdener, M.H., Ashby, R.D., Jyotaki, M. et al. (2019). Sophorolipid biosurfactants activate taste receptor type 1 member 3‐mediated taste responses and block responses to bitter taste in vitro; and in vivo. J. Surfactant Deterg. 22: 441–449.
191 191 Penfold, J., Chen, M., Thomas, R.K. et al. (2011). Solution self‐assembly of the sophorolipid biosurfactant and its mixture with anionic surfactant sodium dodecyl benzene sulfonate. Langmuir 27: 8867–8877.
192 192 Manet, S., Cuvier, A.‐S., Valotteau, C. et al. (2015). Structure of bolaamphiphile sophorolipid micelles characterized with SAXS, SANS, and MD simulations. J. Phys. Chem. B 119: 13113–13133.
193 193 Cecutti, C., Focher, B., Perly, B., and Zemb, T. (1991). Glycolipid self‐assembly: Micellar structure. Langmuir 7: 2580–2585.
194 194 Zhou, S., Xu, C., Wang, J. et al. (2004). Supramolecular assemblies of a naturally derived sophorolipid. Langmuir 20: 7926–7932.
195 195 Baccile, N., Pedersen, J.S., Pehau‐Arnaudete, G., and Van Bogaertf, I.N.A. (2013). Surface charge of acidic sophorolipid micelles: Effect of base and time. Soft Matter 9: 4911–4922.
196 196 Arima, K., Kakinuma, A., and Tamura, G. (1968). Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: Isolation, characterization, and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 31: 488–494.
197 197 Kakinuma, A., Hori, M., Sugino, H. et al. (1969). Determination of the location of the lactone ring in surfactin. Agric. Biol. Chem. 33: 1523–1524.
198 198 Kakinuma, A., Ouchida, A., Shima, T. et al. (1969). Confirmation of the structure of surfactin by mass spectrometry. Agric. Biol. Chem. 33: 1669–1671.
199 199 Kakinuma, A., Sugino, H., Isono, M. et al. (1969). Determination of fatty acids in surfactin and elucidation of the total structure of surfactin. Agric. Biol. Chem. 33: 973–976.
200 200 Kakinuma, A., Hori, M., Isono, M. et al. (1969d). Determination of amino acid sequence of surfactin, a crystalline peptide‐lipid surfactant produced by Bacillus subtilis. Agric. Biol. Chem. 33: 971–972.
201 201 Bonmatin, J.M., Genest, M., Labbe, H., and Ptak, M. (1994). Solution three‐dimensional structure of surfactin: A cyclic lipopeptide studied by 1H‐NMR, distance geometry, and molecular dynamics. Biopolymers 34: 975–986.
202 202 Vass, E., Besson, F., Majer, Z. et al. (2001). Ca2+‐induced changes of surfactin conformation: An FTIR and circular dichroism study. Biochem. Biophys. Res. Commun. 282: 361–367.
203 203 Tsan, P., Volpon, L., Besson, F., and Lancelin, J.‐M. (2007). Structure and dynamics of surfactin studied by NMR in micellar media. J. Am. Chem. Soc. 129: 1968–1977.
204 204 Zou, A., Liu, J., Garamus, V.M. et al. (2010). Micellization activity of the natural lipopeptide [Glu1, Asp5] surfactin‐C15 in aqueous solution. J. Phys. Chem. B 114: 2712–2718.
205 205 Razafindralambo, H., Thonart, P., and Paquot, M. (2004). Dynamic and equilibrium surface tensions of surfactin aqueous solutions. J. Surfactant Deterg. 7: 41–46.
206 206 Thimon, L., Peypoux, F., and Michel, G. (1992). Interactions of surfactin, a biosurfactant from Bacillus subtilis, with inorganic cations. Biotechnol. Lett. 14: 713–718.
207 207 Thimon, L., Peypoux, F., Wallach, J., and Michel, G. (1993). Ionophorous and sequestering properties of surfactin, a biosurfactant from Bacillus subtilis. Colloids Surf. B. Biointerfaces 1: 57–62.
208 208 Li, Y., Ye, R.‐Q., and Mu, B.‐Z. (2009). Influence of sodium ions on micelles of surfactin‐C16 in solution. J. Surfactant Deterg. 12: 31–36.
209 209 Li, Y., Zou, A.‐H., Ye, R.‐Q., and Mu, B.‐Z. (2009). Counterion‐induced changes to the micellization of surfactin‐C16 aqueous solution. J. Phys. Chem. B 113: 15272–15277.
210 210 Han, Y., Huang, X., Cao, M., and Wang, Y. (2008). Micellization of surfactin and its effect on the aggregate conformation of amyloid β(1‐40). J. Phys. Chem. B 112: 15195–15201.
211 211 Ishigami, Y., Osman, M., Nakahara, H. et al. (1995). Significance of β‐sheet formation for micellization and surface adsorption of surfactin. Colloids Surf. B. Biointerfaces 4: 341–348.
212 212 Maget‐Dana, R. and Ptak, M. (1992). Interfacial properties of surfactin. J. Colloid Interface Sci. 153: 285–291.
213 213 Knoblich, A., Matsumoto, M., Ishiguro, R. et al. (1995). Electron cryo‐microscopic studies on micellar shape and size of surfactin, an anionic lipopeptide. Colloids Surf. B. Biointerfaces 5: 43–48.
214 214 Zou, A., Liu, J., Garamus, V.M. et al. (2010). Interaction between the natural lipopeptide [Glu1, Asp5] surfactin‐C15 and hemoglobin in aqueous solution. Biomacromolecules 11: 593–599.
215 215 Osman, M., Hoiland, H., Holmsen, H., and Ishigami, Y. (1998). Tuning micelles of a bioactive heptapeptide biosurfactant via extrinsically induced conformational transition of surfactin assembly. J. Pept. Sci. 4: 449–458.
216 216 Shen, H.‐H., Thomas, R.K., Chen, C.‐Y. et al. (2009). Aggregation of the naturally occurring lipopeptide, surfactin, at interfaces and in solution: an unusual type of surfactant? Langmuir 25: 4211–4218.
217 217 Menger, F.M. (2002). Supramolecular chemistry and self‐assembly. Proc. Natl. Acad. Sci. U. S. A. 99: 4819–4822.
218 218 Bhattacharya, S., Maitra, U., Mukhopadhyay, S., and Srivastava, A. (2006). Advances in molecular hydrogels (eds. G. Weiss and P. Terech). Springer: Molecular Gels. Dordrecht.
219 219 Galantini, L., di Gregorio, M.C., Gubitosi, M. et al. (2015). Bile salts and derivatives: rigid unconventional amphiphiles as dispersants, carriers and superstructure building blocks. Curr. Opin. Colloid Interface Sci. 20: 170–182.
220 220 Savage, P.B. (2002). Cationic steroid antibiotics. Curr. Med. Chem.: Anti‐Infect. Agents 1: 293–304.
221 221 Svobodova, H., Noponen, V., Kolehmainen, E., and Sievaenen, E. (2012). Recent advances in steroidal supramolecular gels. RSC Adv. 2: 4985–5007.
222 222 Vázquez Tato, J. (2014). Molecular biomimicry. Santiago: Servicio de Publicaciones, USC. ISBN 978‐84‐16183‐11‐1.