Читать книгу Biosurfactants for a Sustainable Future - Группа авторов - Страница 37

References

Оглавление

1 1 Willcox, M. (2000). Soap. In: Poucher's Perfumes, Cosmetics and Soaps, 10e (ed. H. Butler), 453. Dordrecht: Kluwer Academic Publishers. ISBN: 978‐0‐7514‐0479‐1. Archived from the original on 2016‐08‐20. The earliest recorded evidence of the production of soap‐like materials dates back to around 2800 BCE in ancient Babylon.

2 2 Kosswig, K. (2005). "Surfactants" in Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley VCH https://doi.org/10.1002/14356007.a25747.

3 3 Santos, D.K.F., Rufino, R.D., Luna, J.M. et al. (2016). Biosurfactants: multifunctional biomolecules of the 21st century. IJMS 17 (3): 401–431.

4 4 Sarma, H., Bustamante, K.L.T., and Prasad, M.N.V. (2019). Biosurfactants for oil recovery from refinery sludge: magnetic nanoparticles assisted purification. In: Industrial and Municipal Sludge (eds. M.N.V. Prasad, P.J. de Campos Favas, M. Vithanage and S. Venkata Mohan), 107–132. Butterworth‐Heinemann, UK https://doi.org/10.1016/B978‐0‐12‐815907‐1.00006‐4.

5 5 Fenibo, E.O., Ijoma, G.N., Selvarajan, R., and Chikere, C.B. (2019). Microbial surfactants: the next generation multifunctional biomolecules for applications in the petroleum industry and its associated environmental remediation. Microorganisms 7: 581.

6 6 Shekhar, S., Sundaramanickam, A., and Balasubramanian, T. (2015). Biosurfactant producing microbes and their potential applications: A review. Crit. Rev. Environ. Sci. Technol. 45: 1522–1554.

7 7 Muller, M.M., Kügler, J.H., Henkel, M. et al. (2012). Rhamnolipids – Next generation surfactants? J. Biotechnol. 161: 366–380.

8 8 Myers, D. (2010). Surfactant Science and Technology, 3e. Hoboken: Wiley.

9 9 Chaudhary, D.K. and Kim, J. (2019). New insights into bioremediation strategies for oil‐contaminated soil in cold environments. Int. Biodeter. Biodegr. 142: 58–72.

10 10 Malavenda, R., Rizzo, C., Michaud, L. et al. (2015). Biosurfactant production by Arctic and Antarctic bacteria growing on hydrocarbons. Polar Biol. 38: 1565–1574.

11 11 Geys, R., Soetaert, W., and Van Bogaert, I. (2014). Biotechnological opportunities in biosurfactant production. Curr. Opin. Biotechnol. 30: 66–72.

12 12 Jahan, R., Bodratti, A.M., Tsianou, M., and Alexandridis, P. (2020). Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Adv. Colloid Interface Sci. https://doi.org/10.1016/j.cis.2019.102061.

13 13 Li, X., Islam, M.M., Chen, L. et al. (2020). Metagenomics‐guided discovery of potential metallothionein genes from the soil microbiome that confer Cu and/or Cd resistance. Appl. Environ. Microbiol. 86 (9): e02907–e02919.

14 14 Dutta, S., Rajnish, K.N., Samuel, M.S. et al. (2020). Metagenomic applications in microbial diversity, bioremediation, pollution monitoring, enzyme and drug discovery. A review. Environ. Chem. Lett. https://doi.org/10.1007/s10311‐020‐01010‐z.

15 15 Trindade, M., van Zyl, L.J., Navarro‐Fernandez, J., and Elrazak, A.A. (2015). Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates. Front. Microbiol. 6: 1–14.

16 16 Kisand, V., Valente, A., Lahm, A. et al. (2012). Phylogenetic and functional metagenomic profiling for assessing microbial biodiversity in environmental monitoring. PLoS One 7 (8): e43630. https://doi.org/10.1371/journal.pone.0043630.

17 17 Sarma, H., Nava, A.R., and Prasad, M.N.V. (2019). Mechanistic understanding and future prospect of microbe‐enhanced phytoremediation of polycyclic aromatic hydrocarbons in soil. Environ. Technol. Innov. 13: 318–330.

18 18 Sarma, H. and Prasad, M.N.V. (2018). Metabolic engineering of rhizobacteria associated with plants for remediation of toxic metals and metalloids. In: Transgenic Plant Technology (ed. M.N.V. Prasad). Elsevier, Netherlands, 299–318. eBook ISBN: 9780128143902, Paperback ISBN: 9780128143896.

19 19 Kennedy, J., Flemer, B., Jackson, S.A. et al. (2010). Marine metagenomics: new tools for the study and exploitation of marine microbial metabolism. Mar. Drugs 8: 608–628.

20 20 Montaser, R. and Luesch, H. (2011). Marine natural products: a wave of new drugs? Future Med. Chem. 3: 1475–1489. https://doi.org/10.4155/fmc.11.118.

21 21 Rocha‐Martin, J., Harrington, C., Dobson, A., and O'Gara, F. (2014). Emerging strategies and integrated systems microbiology technologies for biodiscovery of marine bioactive compounds. Mar. Drugs 12: 3516–3559. https://doi.org/10.3390/md12063516.

22 22 Sarma, H., Islam, N.F., Borgohain, P. et al. (2016). Localization of polycyclic aromatic hydrocarbons and heavy metals in surface soil of Asia's oldest oil and gas drilling site in Assam, Northeast India: Implications for the bio economy. Emerging Contam. 2 (3): 119–127.

23 23 Sharma, D., Sarma, H., Hazarika, S. et al. (2018). Agro‐ecosystem diversity in petroleum and natural gas explored sites in Assam state, north‐eastern India: Socio‐economic perspectives. In: Sustainable Agriculture Reviews 27 (ed. E. Lichtfouse). Springer, Cham, 37–60.

24 24 Sarma, H. and Prasad, M.N.V. (2016). Phytomanagement of polycyclic aromatic hydrocarbons and heavy metals‐contaminated sites in Assam, north eastern state of India, for boosting bioeconomy. In: Bioremediation and Bioeconomy (ed. M.N.V. Prasad), 609–626. Elsevier, USA, Chapter 24. doi:https://doi.org/10.1016/B978‐0‐12‐802830‐8.00024‐1. ISBN: 978‐0‐12‐802830‐8.

25 25 Sharma, N., Lavania, M., Kukreti, V., and Lal, B. (2020). Instigation of indigenous thermophilic bacterial consortia for enhanced oil recovery from high temperature oil reservoirs. PLoS One 15 (5): e0229889. https://doi.org/10.1371/journal.pone.0229889.

26 26 Varjani, S.J. (2017). Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 223: 277–286.

27 27 Tian, Z.‐J., Chen, L.‐Y., Li, D.‐H. et al. (2016). Characterization of a biosurfactant‐producing strain Rhodococcus sp. hl‐6. Rom. Biotechnol. Lett. 21 (4): 11650–11659.

28 28 Saikia, R.R., Deka, S., Deka, M., and Sarma, H. (2012). Optimization of environmental factors for improved production of rhamnolipid biosurfactants by Pseudomonas aeruginosa RS29 on glycerol. J. Basic Microbiol. 52: 446–457.

29 29 Sarma, H. and Prasad, M.N.V. (2015). Plant‐microbe association‐assisted removal of heavy metals and degradation of polycyclic aromatic hydrocarbons. In: In: S Mukherjee (ed.), Petroleum Geosciences: Indian Contexts, Switzerland, 219–Switzerland, 236. Springer International Publishing https://doi.org/10.1007/978‐3‐319‐03119‐4_10. ISBN: 978‐3‐319‐03118‐7.

30 30 Cameotra, S.S. and Singh, P. (2008). Bioremediation of oil sludge using crude biosurfactants. Int. Biodeter. Biodegr. 62: 274–280.

31 31 Perfumo, A., Banat, I.M., Canganella, F., and Marchant, R. (2006). Rhamnolipid production by a novel hydrocarbon‐degrading Pseudomonas aeruginosa AP02‐1. Appl. Microbiol. Biotechnol. 72: 132–138.

32 32 Ma, Z., Liu, J., Dick, R.P. et al. (2018). Rhamnolipid influences biosorption and biodegradation of Phenanthrene by Phenanthrene‐ degrading strain Pseudomonas sp. pH6. Environ. Pollut. 240: 359–367.

33 33 Chen, W., Wilkes, G., Khan, I.U. et al. (2018). Aquatic bacterial communities associated with land use and environmental factors in agricultural landscapes using a metabarcoding approach. Front. Microbiol. 9: 2301.

34 34 Nisenbaum, M., Corti‐Monzon, G., Villegas‐Plazas, M. et al. (2020). Enrichment and key features of a robust and consistent indigenous marine‐cognate microbial consortium growing on oily bilge wastewaters. Biodegradation https://doi.org/10.1007/s10532‐020‐09896.

35 35 De Silva Araujo, S.C., Silva‐Portela, R.C.B., de Lima, D.C. et al. (2020). MBSP1: A biosurfactants protein derived from a metagenomic library with activity in oil degradation. Sci. Rep. 10: 1340.

36 36 Vigor, S., Joessar, M., Soares‐Castro, P. et al. (2020). Microbial metabolic potential of phenol degradation in wastewater treatment plant of crude oil refinery: Analysis of metagenomes and characterization of isolates. Microorganisms 8: 652.

37 37 Leite, G.G.F., Figueirora, J.V., Almedia, T.C.M. et al. (2016). Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum. Am. Inst. Chem. Eng. 32: 262–270.

38 38 Qinglong, L., Tang, J., Bai, Z. et al. (2015). Distribution of petroleum degrading genes and factor analysis of petroleum contaminated soil from the Dagang oilfield, China. Sci. Rep. 5: 11068.

39 39 Sachdev, D.P. and Cameotra, S.S. (2013). Biosurfactants in agriculture, mini‐review. Appl. Microbiol. Biotechnol. 97: 1005–1016.

40 40 Kebbouche‐Gana, S., Gana, M.L., Ferrioune, I. et al. (2013). Production of biosurfactant on crude date syrup under saline conditions by entrapped cells of Natrialba sp. strain E21, an extremely halophilic bacterium isolated from a solar saltern (Ain Salah, Algeria). Extremophiles 17: 981–993.

41 41 Rizzo, C., Michaud, L., Hörmann, B. et al. (2013). Bacteria associated with sabellids (Polychaeta: Annelida) as a novel source of surface active compounds. Mar. Pollut. Bull. 70: 125–133.

42 42 Handelsman, J., Rondon, M.R., Brady, S.F. et al. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5: R245–R249.

43 43 Rappe, M.S. and Giovannoni, S.J. (2003). The uncultured microbial majority. Annu. Rev. Microbiol. 57: 369–394.

44 44 Handelsman, J., Liles, M., Mann, D., and Riesenfeld, C. (2002). Cloning the metagenome: Culture‐independent access to the diversity and functions of the uncultivated microbial world. Methods Microbiol. 33: 241–255.

45 45 Rondon, M.R., August, P.R., Bettermann, A.D. et al. (2000). Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. 66(6):2541–2547.

46 46 Jackson, S.A., Borchert, E., O'Gara, F., and Dobson, A.D. (2015). Metagenomics for the discovery of novel biosurfactants of environmental interest from marine ecosystems. Curr. Opin. Biotechnol. 33: 176–182.

47 47 Kennedy, J., O'Leary, N.D., Kiran, G.S. et al. (2011). Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. J. Appl. Microbiol. 111: 787–799.

48 48 Gloux, K., Leclerc, M., Iliozer, H. et al. (2007). Development of high‐throughput phenotyping of metagenomic clones from the human gut microbiome for modulation of eukaryotic cell growth. Appl. Environ. Microbiol. 73: 3734–3737.

49 49 Gurgui, C. and Piel, J. (2010). Metagenomic approaches to identify and isolate bioactive natural products from microbiota of marine sponges. In: Metagenomics: Methods and Protocols, Methods in Molecular Biology (eds. W.R. Streit and R. Daniel), 247–263. Berlin: Springer Science + Business Media.

50 50 Zhou, J., Bruns, M., and Tiedje, J.M. (1996). DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62: 316–322.

51 51 Walter, V., Syldatk, C., and Hausmann, R. (2010). Screening concepts for the isolation of biosurfactant producing microorganisms. In: Biosurfactants (ed. R. Sen), 1–13. New York: Landes Bioscience and Springer Science.

52 52 Weber, T., Blin, K., Duddela, S. et al. (2015). AntiSMASH 3.0 – a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43: 1–7.

53 53 Altschul, S.F., Gish, W., Miller, W. et al. (1990). Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

54 54 Suenaga, H. (2012). Targeted metagenomics: A high‐resolution metagenomics approach for specific gene clusters in complex microbial communities. Environ. Microbiol. 14: 13–22. https://doi.org/10.1111/j.1462‐2920.2011.02438.x.

55 55 Tuffin, M., Anderson, D., Heath, C., and Cowan, D. (2009). Metagenomic gene discovery: How far have we moved into novel sequence space? Biotechnol. J. 4: 1671–1683.

56 56 Ekkers, D.M., Cretoiu, M.S., Kielak, A.M., and Elsas, J.D. (2012). The great screen anomaly — a new frontier in product discovery through functional metagenomics. Appl. Microbiol. Biotechnol. 93: 1005–1020.

57 57 Montiel, D., Kang, H.‐S., Chang, F.‐Y. et al. (2015). Yeast homologous recombination‐based promoterengineering for the activation of silent natural product biosynthetic gene clusters. Proc. Natl. Acad. Sci. USA. 112 (29): 8953–8958. https://doi.org/10.1073/pnas.1507606112.

58 58 Chen, Y. and Murrell, J.C. (2010). When metagenomics meets stable‐isotopes probing: Progress and perspectives. Trends Microbiol. 18: 4.

59 59 Dumont, M.G. and Murrell, J.C. (2005). Stable isotope probing – Linking microbial identity to function. Nat. Rev. Microbiol. 3: 499–504.

60 60 Binga, E.K., Lasken, R.S., and Neufeld, J.D. (2008). Something from (almost) nothing: The impact of multiple displacement amplification on microbial ecology. ISME J. 2: 233–241.

61 61 Burch, A.Y., Browne, P.J., Dunlap, C.A. et al. (2011). Comparison of biosurfactant detection methods reveals hydrophobic surfactants and contact‐regulated production. Environ. Microbiol. 13: 2681–2691.

62 62 He, S., Ni, Y., Lu, L. et al. (2020). Simultaneous degradation of n‐hexane and production of biosurfactants by Pseudomonas sp. strain NEE2 isolated from oil‐contaminated soils. Chemosphere 242: 125237.

63 63 Lenchi, N., Kebbouche‐Gana, S., Servais, P. et al. (2020). Disel biodegradation capacities and biosurfactants production in saline‐alkaline conditions by Delftia sp. NL1, isolated from an Algerian oilfield. Geomicrobiol. J. https://doi.org/10.1080/01490451.2020.1722769.

64 64 Siegmund, I. and Wagner, F. (1991). New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol. Tech. 5: 265–268.

65 65 Bodour, A.A. and Maier, R.M. (1998). Application of a modified drop collapse technique for surfactant quantification and screening of biosurfactant‐producing microorganisms. J. Microbiol. Methods 32: 273–280.

66 66 Burch, A.Y., Shimada, B.K., Browne, P.J., and Lindow, S.E. (2010). Novel high‐throughput detection method to assess bacterial surfactant production. Appl. Environ. Microbiol. 76: 5363–5372.

67 67 Thavasi, R., Sharma, S., and Jayalakshmi, S. (2011). Evaluation of screening methods for the isolation of biosurfactant producing marine bacteria. J. Pet. Environ. Biotechnol. S1: 001.

68 68 Batista, S.B., Mounteer, A.H., Amorim, F.R., and Totola, M.R. (2006). Isolation and characterization of biosurfactant/bioemulsifier‐producing bacteria from petroleum contaminated sites. Bioresour. Technol. 97: 868–875.

69 69 Rosenberg, M., Gutnick, D., and Rosenberg, E. (1980). Adherence to bacteria to hydrocarbons: A simple method for measuring cell‐surface hydrophobicity. FEMS Microbiol. Lett. 9: 29–33.

70 70 Gidudu, B., Mudenda, E., and Chirwa, E.M.N. (2020). Biosurfactant produced by Serrati sp. and its application in bioremediation enhancement of oil sludge. Chem. Eng. Trans. 79: 433–438.

71 71 Ashitha, A., Radhakrishnan, E.K., and Jyothis, M. (2020). Characterization of biosurfactant produced by the endophyte Burkholderia sp. WYAT7 and evaluation of its antibacterial and antibiofilm potentials. J. Biotechnol. https://doi.org/10.1016/j.jbiotec.2020.03.005.

72 72 Charlop‐Powers, Z., Milshteyn, A., and Brady, S.F. (2014). Metagenomic small molecule discovery methods. Curr. Opin. Microbiol. 19C: 70–75.

73 73 Kim, J.H., Feng, Z., Bauer, J.D. et al. (2010). Cloning large natural product gene clusters from the environment: Piecing environmental DNA gene clusters back together with TAR. Biopolymers 93: 833–844.

74 74 Owen, J.G., Reddy, B.V.B., Ternei, M.A. et al. (2013). Mapping gene clusters within arrayed metagenomic libraries to expand the structural diversity of biomedically relevant natural products. Proc. Natl. Acad. Sci. USA. 110: 11797–11802.

75 75 Loeschcke, A., Markert, A., Wilhelm, S. et al. (2013). TREX: a universal tool for the transfer and expression of biosynthetic pathways in bacteria. ACS Synth. Biol. 2: 22–33.

76 76 Ferrer, M., Chernikova, T.N., Yakimov, M.M. et al. (2003). Chaperonins govern growth of Escherichia coli at low temperatures. Nat. Biotechnol. 21: 1266–1267.

77 77 Makrides, S.C. (1996). Strategies for achieving high‐level expression of genes in Escherichia coli. Microbiol. Rev. 60: 512–538.

78 78 Van Elsas, J.D., Speksnijder, A.J., and van Overbeek, L.S. (2008). A procedure for the metagenomics exploration of disease‐suppressive soils. J. Microbiol. Methods 75: 515–522.

79 79 Kakirde, K.S., Parsley, L.C., and Liles, M.R. (2010). Size does matter: Application‐driven approaches for soil metagenomics. Soil Biol. Biochem. 42: 1911–1923.

Biosurfactants for a Sustainable Future

Подняться наверх