Читать книгу Bovine Reproduction - Группа авторов - Страница 51
References
Оглавление1 1 Pritchard, J. (1955). Ancient Near Eastern Texts (Relating to the Old Testament), 2e, 159–222. Princeton: Princeton University Press.
2 2 Steinach, E. (1940). Sex and Life: Forty Years of Biological and Medical Experiments. New York: Viking Press.
3 3 Bremner, W. (1981). Historical aspects of the study of the testis. In: The Testis (eds. H.G. Burger and D.M. de Kretser), 1–8. New York: Raven Press.
4 4 de Graaf, R. (1972). Treatise on the human reproductive organs (translated by Jocelyn and Setchell). J. Reprod. Fertil. Suppl. 17: 1–64.
5 5 Eik‐Nes, K. (1975). Biosynthesis and secretion of testicular steroids. In: Handbook of Physiology, Section 7, vol. V (eds. D.W. Hamilton and R.O. Greep), 467–483. Washington, DC: American Physiological Society.
6 6 Leydig, F. (1850). Zur anatomie der manlichen geslechtsargane und analdrusen de saugethiere. Z. Wiss. Zool. 2: 1.
7 7 Sertoli, E. (1865). De l'esistenza di particulari cellulae ramificatai new canalicoli seminiferi del l'testicolo umano. Morgagni 7: 31–40.
8 8 Christensen, A. (1975). Leydig cells. In: Handbook of Physiology, Section 7, vol. V (eds. D.W. Hamilton and R.O. Greep), 57–94. Washington, DC: American Physiological Society.
9 9 Fawcett, D. (1975). Ultrastructure and function of the Sertoli cell. In: Handbook of Physiology, Section 7, vol. V (eds. D.W. Hamilton and R.O. Greep), 21–55. Washington, DC: American Physiological Society.
10 10 Parkes, A. (1966). The internal secretions of the testis. In: Marshall's Physiology of Reproduction, vol. III (ed. A. Parkes), 412–569. London: Longmans.
11 11 David, K., Dingemanse, E., Freud, J., and Laque, F. (1935). Uber krystellinishces manliches hormone aus hoden (testosteron), wirksamer als aus harn oder uas cholesterin bereitestes androsteron. Z. Physiol. Chem. 233: 281.
12 12 Smith, P. (1930). Hypophysectomy and replacement therapy in the rat. Am. J. Anat. 45: 205–273.
13 13 Greep, R., Fevold, H., and Hisaw, F. (1936). Effects of two hypophyseal hormones on the reproductive system of the mare rat. Anat. Rec. 65: 261–271.
14 14 Greep, R. and Fevold, H. (1937). The spermatogenic and secretory functions of the gonads of hypophysectomized adult rats tested with pituitary FSH and LH. Endocrinology 21: 611–618.
15 15 Hooker, C. (1994). The postnatal history and function of the interstitial cell of the testis of the bull. Am. J. Anat. 74: 1–37.
16 16 Steinberger, A., Walther, J., Heindel, K. et al. (1979). Hormone interactions in Sertoli cells. in vitro 15: 23–31.
17 17 de Kretser, D., Kerr, J., Rich, K. et al. (1980). Hormonal factors involved in normal spermatogenesis and following the disruption of spermatogenesis. In: Testicular Development, Structure and Function (eds. A. Steinberger and S. Steinberger), 107–115. New York: Raven Press.
18 18 Bearden, H., Fuquay, J., and Willard, S. (2004). The male reproductive system. In: Applied Animal Reproduction, 6e, 22–35. Upper Saddle River, NJ: Pearson Prentice Hall.
19 19 Setchell, B., Maddocks, S., and Brooks, D. (1993). Anatomy, vasculature, innervation and fluids of the male reproductive tract. In: Physiology of Reproduction, vol. I (eds. E. Knobil and J.D. Neill), 1063–1176. New York: Raven Press.
20 20 Bardin, C., Cheng, C., Mustow, N., and Gunsalus, G. (1993). The Sertoli cell. In: Physiology of Reproduction, vol. I (eds. E. Knobil and J.D. Neill), 1291–1336. New York: Raven Press.
21 21 Senger, P. (2003). The organization and function of the male reproductive system. In: Pathways to Pregnancy and Parturition, 2e, 44–79. Redmond, OR: Current Conceptions Inc.
22 22 Wyrost, P., Radek, J., and Radek, T. (1990). Morphology and development of the bovine testicular artery during fetal and neonatal periods [in Polish]. Pol. Arch. Weter. 30: 39–56.
23 23 Kastelic, J., Cook, R., and Coulter, G. (1997). Scrotal/testicular thermoregulation and the effects of increased testicular temperature in the bull. Vet. Clin. North Am. Food Anim. Pract. 13: 271–282.
24 24 Fawcett, D., Long, J., and Jones, A. (1969). The ultrastructure of the endocrine glands. Recent Prog. Horm. Res. 25: 314–368.
25 25 Hooker, C. (1970). The intertubular tissue of the testis. In: The Testis, vol. I (eds. A.D. Johnson, W.R. Gomes and N.L. Van Demark), 483–550. New York: Academic Press.
26 26 Christensen, A. (2007). A history of the Leydig cell. In: The Leydig Cell in Health and Disease (eds. A.H. Payne and M.P. Hardy), 3–30. Totowa, NJ: Humana Press.
27 27 Stewart, D. and Raeside, J. (1976). Testosterone secretion by the early fetal pig testes in organ culture. Biol. Reprod. 15: 25–28.
28 28 Attal, J. (1969). Levels of testosterone, androstenedione, estrone and estradiol‐17β in testes of fetal sheep. Endocrinology 85: 280–289.
29 29 Fawcett, D., Neaves, W., and Flores, M. (1973). Observations on intertubular lymphatics and the organization of the interstitial tissue of the mammalian testis. Biol. Reprod. 9: 500–532.
30 30 Mori, H. and Christensen, A. (1980). Morphometric analysis of Leydig cells in the normal rat testis. J. Cell Biol. 84: 340–354.
31 31 Belt, W. and Cavazos, L. (1967). Fine structure of the interstitial cells of Leydig in the boar. Anat. Rec. 158: 335–350.
32 32 Booth, W. (1982). Testicular steroids and boar taint. In: Control of Pig Reproduction (eds. D.J.A. Cole and G.R. Foxcroft), 25–44. London: Butterworth Scientific.
33 33 de Kretser, D. and Kerr, J. (1993). The cytology of the testis. In: Physiology of Reproduction, vol. I (eds. E. Knobil and J.D. Neill), 1177–1290. New York: Raven Press.
34 34 Bearden, H., Fuquay, J., and Willard, S. (2004). Neuroendocrine and endocrine regulation of reproduction. In: Applied Animal Reproduction, 6e, 36–60. Upper Saddle River, NJ: Pearson Prentice Hall.
35 35 Hess, R. and de Franco, L. (2008). Spermatogenesis and cycle of the seminiferous epithelium. Adv. Exp. Med. Biol. 636: 1–15.
36 36 Tucker, H. (1982). Seasonality in cattle. Theriogenology 17: 53–59.
37 37 Stumpf, T., Wolfe, M., Roberson, M. et al. (1993). Season of the year influences concentration and pattern of gonadotropins and testosterone in circulation of the bovine male. Biol. Reprod. 49: 1089–1095.
38 38 Godfrey, R., Lunstra, D., Jenkins, T. et al. (1990). Effect of season and location on semen quality and serum concentrations of luteinizing hormone and testosterone in Brahman and Hereford bulls. J. Anim. Sci. 68: 734–749.
39 39 Godfrey, R., Lunstra, D., Jenkins, T. et al. (1990). Effect of location and season on body and testicular growth in Brahman and Hereford bulls. J. Anim. Sci. 68: 1520–1529.
40 40 Jiménez‐Severiano, H., Quintal‐Franco, J., Vega‐Murillo, V. et al. (2003). Season of the year influences testosterone secretion in bulls administered luteinizing hormone. J. Anim. Sci. 81: 1023–1029.
41 41 Dufau, H., Hsueh, A., Cigorraga, D. et al. (1978). Inhibition of Leydig cell function through hormonal regulatory mechanisms. Int. J. Androl. 1 (Suppl. s2a): 193–239.
42 42 Bartke, A., Hafies, A., Bex, F., and Dalterio, S. (1978). Hormonal interactions in regulation of androgen secretion. Biol. Reprod. 18: 44–54.
43 43 Catt, K. and Dufau, M. (1976). Basic concept of the mechanism of action of peptide hormones. Biol. Reprod. 14: 1–15.
44 44 Dufau, M., Veldhuis, J., Fraioli, F. et al. (1983). Mode of bioactive LH secretion in man. J. Clin. Endcocrinol. Metab. 57: 993–1003.
45 45 Hall, P. (1993). Testicular steroid synthesis: organization and regulation. In: Physiology of Reproduction, vol. I (eds. E. Knobil and J.D. Neill), 1335–1362. New York: Raven Press.
46 46 Purvis, K. and Hanson, V. (1978). Hormonal regulation of Leydig cell function. Mol. Cell. Endocrinol. 12: 123–138.
47 47 Fritz, I. (1978). Sites of action of androgens and follicle stimulating hormone on cells of the seminiferous tubules. In: Biochemical Actions of Hormones, vol. V (ed. G. Litwack), 367–382. New York: Academic Press.
48 48 Schanbacher, B. (1982). Hormonal interrelationships between hypothalamus, pituitary and testis in rams and bull. J. Anim. Sci. 55 (Suppl. 2): 56–67.
49 49 Rubin, R., Poland, R., and Tower, B. (1978). Prolactin‐related testosterone secretion in normal adult men. J. Clin. Endocrinol. Metab. 42: 112–116.
50 50 Risbridger, G., Hodgson, Y., and de Krestser, D. (1981). Mechanisms of action of gonadotrophins on the testis. In: The Testis (eds. H.G. Burger and D.M. de Kretser), 195–211. New York: Raven Press.
51 51 Aoki, J. and Fawcett, D. (1978). Is there a local feedback from the seminiferous tubules affecting activity of Leydig cells? Biol. Reprod. 19: 144–158.
52 52 van der Mollen, H. and Rommerts, F. (1981). Testicular steroidogenesis. In: The Testis (eds. H.G. Burger and D.M. de Kretser), 213–238. New York: Raven Press.
53 53 Juniewicz, P. and Johnson, B. (1981). Influence of adrenal steroids upon testosterone secretion by the boar testsis. Biol. Reprod. 20: 409–422.
54 54 Liptrap, R. and Raeside, J. (1975). Increase in plasma testosterone concentration after injection of adrenocorticotropin into the boar. J. Endocrinol. 66: 123–131.
55 55 Tilbrook, A., Turner, A., and Clarke, I. (2000). Effects of stress on reproduction in non‐rodent mammals: the role of glucocorticoids and sex differences. Rev. Reprod. 5: 105–113.
56 56 Moberg, G. (1987). Influence of the adrenal axis upon the gonads. Oxf. Rev. Reprod. Biol. 9: 456–496.
57 57 Moberg, G. (1991). How behavioral stress disrupts the endocrine control of reproduction in domestic animals. J. Dairy Sci. 74: 304–311.
58 58 Liptrap, R. and Raeside, J. (1983). Effect of cortisol on the response to gonadotrophin releasing hormone in the boar. J. Endocrinol. 97: 75–81.
59 59 Matteri, R., Watson, J., and Moberg, G. (1984). Stress or acute adrenocorticotrophin treatment suppresses LHRH‐induced LH release in the ram. J. Reprod. Fertil. 72: 385–393.
60 60 Barnes, M., Kazmer, G., Birrenkott, G., and Grimes, L. (1983). Induced gonadotropin release in adrenocorticotropin‐treated bulls and steers. J. Anim. Sci. 56: 155–161.
61 61 O'Connor, M., Gwazdauskas, F., McGilliard, M., and Saacke, R. (1985). Effect of adrenocorticotropic hormone and associated hormonal responses on semen quality and sperm output of bulls. J. Dairy Sci. 68: 151–157.
62 62 Svechnikov, K., Sultana, T., and Söder, O. (2001). Age‐dependent stimulation of Leydig cell steroidogenesis by interleukin‐1 isoforms. Mol. Cell. Endocrinol. 182: 193–201.
63 63 Amjad, A.I., Söder, O., and Sultana, T. (2006). Role of testicular interleukin‐1alpha tIL‐1alpha in testicular physiology and disease. J. Coll. Physicians Surg. Pak. 16: 55–60.
64 64 Yoshioka, S., Acosta, T., and Okuda, K. (2012). Roles of cytokines and progesterone in the regulation of the nitric oxide generating system in bovine luteal endothelial cells. Mol. Reprod. Dev. 79: 689–696.
65 65 Bouin, P. and Ancel, P. (1903). Recherches sur les celles interstitielles du testicles des mammiferes. Arch. Zool. Exp. Gen. 1: 437–523.
66 66 Berthold, A. (1849). Transplantation der hoden. Arch. Anat. Physiol. Wiss. Med. 16: 42.
67 67 Butendant, A. (1932). Uber die chemie der sexual hormon. Z. Angew. Chem. 45: 655.
68 68 Ewing, L., Davis, J., and Zirkin, B. (1980). Regulation of testicular function: a spatial and temporal view. In: Reproduction of Physiology III. International Review of Physiology, vol. XXII (ed. R.O. Greep), 41–115. Baltimore: University Park Press.
69 69 Ewing, L. and Brown, S. (1977). Testicular steroidogenesis. In: The Testis, vol. IV (eds. A.D. Johnson and W.R. Gomes), 239–287. New York: Academic Press.
70 70 Prelog, V. and Ruzicka, L. (1944). Untersuchungen uber organextrakte uber zwei moschsartig riechende steroide aus schweintetesextrakten. Helv. Chim. Acta 27: 61.
71 71 Steinberger, E. (1971). Hormonal control of mammalian spermatogenesis. Physiol. Rev. 51: 1–22.
72 72 Orgenbin‐Critz, M. (1981). The influence of testicular function on related reproductive organs. In: The Testis (eds. H.G. Burger and D.M. de Kretser), 239–254. New York: Raven Press.
73 73 Griffin, J. (2000). Male reproductive function. In: Textbook of Endocrine Physiology (eds. J.E. Griffin and S.R. Ojeda), 243–264. New York: Oxford University Press.
74 74 Ewing, L., Zirkin, B., and Chubb, C. (1981). Assessment of testicular testosterone production and Leydig cell structure. Environ. Health Perspect. 38: 19–27.
75 75 Velle, W. (1966). Urinary oestrogens in the male. J. Reprod. Fertil. 12: 65–73.
76 76 Joshi, H. and Raeside, J. (1973). Synergistic effects of testosterone and oestrogens on accessory sex glands and sexual behavior of the boar. J. Reprod. Fertil. 33: 411–423.
77 77 Booth, W. (1975). Changes with age in the occurrence of C19 steroids in the testis and submaxillary gland of the boar. J. Reprod. Fertil. 42: 459–472.
78 78 Setchell, B. (1978). Endocrinology of the testis. In: The Mammalian Testes, 109–180. New York: Cornell University Press.
79 79 Ritzen, E., Hansson, V., and Frenchn, F. (1981). The Sertoli cell. In: The Testis (eds. H.G. Burger and D.M. de Kretser), 171–194. New York: Raven Press.
80 80 Ivell, R., Balvers, M., Rust, W. et al. (1997). Oxytocin and male reproductive function. Adv. Exp. Med. Biol. 424: 253–264.
81 81 Wathes, D. (1984). Possible actions of gonadal oxytocin and vasopressin. J. Reprod. Fertil. 71: 315–345.
82 82 Wathes, D. (1989). Oxytocin and vasopressin in the gonads. Oxf. Rev. Reprod. Biol. 11: 87–99.
83 83 Nicholson, H. (1996). Oxytocin: a paracrine regulator of prostatic function. Rev. Reprod. 1: 69–72.
84 84 Ang, H., Ungofroren, H., De Bree, F. et al. (1991). Testicular oxytocin gene expression in seminiferous tubules of cattle and transgenic mice. Endocrinology 128: 2110–2117.
85 85 Ungefroren, H., Davidoff, M., and Ivell, R. (1994). Post transcriptional block in oxytocin gene expression within the seminiferous tubules of the bovine testis. J. Endocrinol. 140: 63–72.
86 86 Ivell, R. and Bathgate, R. (2002). Insulin‐like peptide 3 in Leydig cells. In: The Leydig Cell in Health and Disease (eds. A.H. Payne and M.P. Hardy), 279–290. Totowa, NJ: Humana Press.
87 87 Ivell, R. and Anand‐Ivell, R. (2009). The biology of insulin‐like factor 3 (INSL3) in human reproduction. Hum. Reprod. Update 15: 463–476.
88 88 Ivell, R. and Bathgate, R.A. (2002). Reproductive biology of the relaxin‐like factor (RLF/INSL3). Biol. Reprod. 67: 699–705.
89 89 Annand‐Ivell, R., Relan, V., Balvers, M. et al. (2006). Expression of the insulin‐like peptide 3 (INSL3) hormone receptor (LGCR) system in the testis. Biol. Reprod. 74: 945–953.
90 90 Adham, I., Burkhardt, E., Banahmed, M., and Engel, W. (1993). Cloning of a cDNA for a novel insulin‐like peptide of the testicular Leydig cells. J. Biol. Chem. 268: 26668–26672.
91 91 Anand‐Ivell, R., Heng, K., Hafen, B. et al. (2009). Dynamics of INSL3 peptide expression in the rodent testis. Biol. Reprod. 81: 480–487.
92 92 Bay, K., Hartung, S., Ivell, R. et al. (2005). Insulin‐like factor 3 serum levels in 135 normal men and 85 men with testicular disorders: relationship to the luteinizinghormone–testosterone axis. J. Clin. Endocrinol. Metab. 90: 3410–3418.
93 93 Anand‐Ivell, R., Wohlgemuth, J., Haren, M. et al. (2006). Peripheral INSL3 concentrations decline with age in a large population of Australian men. Int. J. Androl. 29: 618–626.
94 94 Bullesbach, E. and Schwabe, C. (2002). The primary structure and disulfide links of the bovine relaxin‐like factor (RLF). Biochemistry 41: 274–281.
95 95 Anand‐Ivell, R., Ivell, R., Driscoll, D., and Manson, J. (2008). Insulin‐like factor 3 levels in amniotic fluid from human male fetuses. Hum. Reprod. 23: 1180–1186.
96 96 Anand‐Ivell, R., Hiendleder, S., Vinoles, C. et al. (2011). INSL3 in the ruminant: a powerful indicator of gender‐ and genetic‐specific feto‐maternal dialogue. PLoS One 6 (5): e19821.
97 97 Ivell, R., Wade, J., and Anand‐Ivell, R. (2013). INSL3 as a biomarker of Leydig cell functionality. Biol. Reprod. 88: 1–8.
98 98 Feugang, J., Rodriguez‐Munoz, J., Willard, S. et al. (2011). Examination of relaxin and its receptors expression in pig gametes and embryos. Reprod. Biol. Endocrinol. 9: 10.
99 99 Feugang J, Rodríguez‐Munoz J, Willard S, Ryan P. Effects of relaxin on motility characteristics of boar spermatozoa during storage. Proceedings of the Sixth International Symposium on Relaxin and Related Peptides, Florence, Italy, 2012. Italian J. Anat. Embryol. (ISSN 1122‐6714).
100 100 Sagata, D., Minagawa, I., Kohriki, H. et al. The insulin‐like factor 3 (INSL 3)‐receptor (RXFP2) network functions as a germ cell survival/anti‐apoptotic factor in boar testes. Endocrinology 156: 1523–1539.
101 101 Pitia, A., Uchiyama, K., Sano, H. et al. (2017). Functional insulin‐like factor 3 (INSL3) hormone‐receptor system in the testes and spermatozoa of domestic ruminants and its potential as a predictor of sire fertility. Anim. Sci. J. 88 (4): 678–690.
102 102 Bagna, B., Schwabe, C., and Anderson, L. (1991). Effect of relaxin on facilitation of parturition in dairy heifers. J. Reprod. Fertil.: 605–615.
103 103 Roche, P., Crawford, R., and Tregear, G. (1993). A single‐copy relaxin‐like gene sequence is present in sheep. Mol. Cell. Endocrinol. 91: 21–28.
104 104 Wilkinson, T., Speed, T., Tregear, G., and Bathgate, R. (2005). Evolution of the relaxin‐like peptide family. BMC Evol. Biol. 5: 14.
105 105 Musah, A., Schwabe, C., Willham, R., and Anderson, L. Relaxin induction of parturition in beef heifers. Endocrinology 118 (4): 1476–1482.
106 106 Malone, L., Opazo, J., Ryan, P., and Hoffmann, F. (2017). Progressive erosion of the relaxin 1 gene in bovids. Gen. Comp. Endocrinol. 252: 12–17.
107 107 Feugang, J., Youngblood, R., Greene, J. et al. (2012). Application of quantum dot nanoparticles for potential non‐invasive bio‐imaging of mammalian spermatozoa. J. Nanobiotechnol. 10: 45.
108 108 Kohsaka, T., Hamano, K., Sasada, H. et al. (2003). Seminal immunoreactive relaxin in domestic animals and its relationship to sperm motility and as a possible index for predicting the fertilizing ability of sires. Int. J. Androl. 26: 115–120.
109 109 Kohsaka, T., Kato, S., Qin, S. et al. (2009). Identification of boar testis as a source of and target tissue of relaxin. Ann. NY Acad. Sci. 1160: 194–196.
110 110 Ferlin, A., Menegazzo, M., Gianesello, I. et al. (2012). Effects of relaxin on human sperm functions. J. Androl. 33: 474–482.
111 111 Feugang, J., Rodriguez‐Munoz, J., Dillard, D. et al. (2015). Beneficial effects of relaxin on motility characteristics of stored boar spermatozoa. Reprod. Biol. Endocrinol. 13: 24–33.
112 112 Miah, A., Salma, U., Tareq, Y. et al. (2007). Effect of relaxin on motility, acrosome reaction, and utilization of glucose in fresh and frozen–thawed bovine spermatozoa. Anim. Sci. J. 78: 495–502.
113 113 Miah, A., Salma, U., Takagi, Y. et al. (2008). Effect of relaxin and IGF‐1 on capacitation, acrosome reaction, cholesterol efflux and utilization of labeled and unlabeled glucose in porcine spermatozoa. Reprod. Med. Biol. 7: 29–36.
114 114 Miah A, Salma U, Sinah P, et al. Intracellular signaling cascades induced by relaxin in the stimulation of capacitation and acrosome reaction in fresh and frozen–thawed bovine spermatozoa. Anim. Reprod. Sci. 2011; 125: 31–40.
115 115 Han, Y., Miah, A., Yoshida, M. et al. (2006). Effect of relaxin on in vitro fertilization (IVF) of porcine oocytes. J. Reprod. Dev. 52: 657–662.
116 116 Elkhawagah, A., Longobardi, V., Sosa, G. et al. (2013). Effect of relaxin and fertilizing ability of buffalo sperm. Reprod. Fertil. Dev. 26 (1): 186.
117 117 Elkhawagah, A., Longobardi, V., Neglia, G. et al. (2015). Effect of relaxin on fertility parameters of frozen–thawed buffalo (Bubalus bubali) sperm. Reprod. Domest. Anim. 50: 756–762.
118 118 Elkhawagah, A., Nervo, T., Poletto, M. et al. (2020). Effect of relaxin on semen quality variables of croypreserved stallion semen. Anim. Reprod. Sci. 216 https://doi.org/10.1016/j.anireprosci.2020.106351.
119 119 Behringer, R. (1994). The in vivo roles of Müllerian‐inhibiting substance. Curr. Top. Dev. Biol. 29: 171–187.
120 120 Cate, R., Mattaliano, R., Hession, C. et al. (1986). Isolation of the bovine and human genes for Müllerian inhibiting substance and expression of the human gene in animal cells. Cell 45: 685–698.
121 121 Belville, C., Van Vlijmen, H., Ehrenfels, C. et al. (2004). Mutations of the anti‐Müllerian hormone gene in patients with persistent Müllerian duct syndrome: biosynthesis, secretion, and processing of the abnormal proteins and analysis using a three‐dimensional model. Mol. Endocrinol. 18: 708–721.
122 122 Kitahara, G., El‐Sheikh Ali, H., Sato, T. et al. (2012). Anti‐Müllerian hormone (AMH) profiles as a novel biomarker to evaluate the existence of a functional cryptorchid testis in Japanese Black calves. J. Reprod. Dev. 58: 310–315.
123 123 Ying, S. (1987). Inhibins and activins: chemical properties and biological activity. Proc. Soc. Exp. Biol. Med. 186: 253–264.
124 124 Robertson, D., Burger, H., and Fuller, P. (2004). Inhibin/activin and ovarian cancer. Endocr. Relat. Cancer 11: 35–49.
125 125 Suresh, P., Rajan, T., and Tsutsumi, R. (2011). New targets for old hormones: inhibin’s clinical role revisited. Endocr. J. 58: 223–235.
126 126 Phillips, D. (2005). Activins, inhibins and follistatins in the large domestic species. Domest. Anim. Endocrinol. 28: 1–16.
127 127 Kaneko, H., Noguchi, J., Kikuchi, K., and Hasegawa, Y. (2003). Molecular weight forms of inhibin A and inhibin B in the bovine testis change with age. Biol. Reprod. 68: 1918–1925.
128 128 Kaneko, H., Matsuzaki, M., Noguchi, J. et al. (2006). Changes in circulating and testicular levels of inhibin A and B during postnatal development in bulls. J. Reprod. Dev. 52: 741–749.
129 129 Fortes, M., Reverter, A., Hawken, R. et al. (2012). Candidate genes associated with testicular development, sperm quality, and hormone levels of inhibin, luteinizing hormone, and insulin‐like growth factor 1 in Brahman bulls. Biol. Reprod. 87: 58.
130 130 Ginther, O., Beg, M., Bergfelt, D., and Kot, K. (2002). Activin A, estradiol, and free insulin‐like growth factor I in follicular fluid preceding the experimental assumption of follicle dominance in cattle. Biol. Reprod. 67: 14–19.
131 131 Beg, M. and Ginther, O. (2006). Follicle selection in cattle and horses: role of intrafollicular factors. Reproduction 132: 365–377.
132 132 Xiong, X., Wang, A., Liub, G. et al. (2006). Effects of p,p'‐dichlorodiphenyl dichloroethylene on the expressions of transferrin and androgen‐binding protein in rat Sertoli cells. Environ. Res. 101: 334–339.
133 133 Griswold, M. (1993). Protein secretion by Sertoli cells: general considerations. In: The Sertoli Cell (eds. L.D. Russell and M.D. Griswold), 195–200. Clearwater, FL: Cache River Press.
134 134 Kelce, W., Stone, C., Laws, S. et al. (1995). Persistent DDT metabolite p,p'‐DDE is a potent androgen receptor antagonist. Nature 375: 581–585.
135 135 Griswold, M. (1988). Protein secretions of Sertoli cells. Int. Rev. Cytol. 110: 133–156.
136 136 Tapanainen, J., Aittomaki, K., and Huhtaniemi, L. (1997). New insights into the role of follicle‐stimulating hormone in reproduction. Ann. Med. 29: 265–266.
137 137 Fritz, I., Rommerts, F., Louis, B., and Dorrington, J. (1976). Regulation by FSH and dibutyryl cyclic AMP of the formation of androgen binding protein in Sertoli cell‐enriched cultures. J. Reprod. Fertil. 46: 17–24.
138 138 Suire, S., Fontaine, I., and Guillou, F. (1995). Follicle stimulating hormone (FSH) stimulates transferrin gene transcription in rat Sertoli cells: cis and trans‐acting elements involved in FSH action via cyclic 3′,5′‐monophosphate on the transferrin gene. Mol. Endocrinol. 9: 756–766.
139 139 Schteingart, H., Meroni, S., Pellizzari, E. et al. (1995). Regulation of Sertoli cell aromatase activity by cell density and prolonged stimulation with FSH, EGF, insulin and IGF‐1 at different moments of pubertal development. J. Steroid Biochem. Mol. Biol. 52: 375–381.
140 140 Skinner, M. and Griswold, M. (1982). Secretion of testicular transferrin by cultured Sertoli cells is regulated by hormones and retinoids. Biol. Reprod. 27: 211–221.
141 141 Lin, L., Doherty, D., Lile, J. et al. (1993). GDNF: a glial cell line‐derived neurotrophic factor for midbrain dopaminergic neurons. Science 260: 1130–1132.
142 142 Liu, T., Yu, B., Luo, F. et al. (2012). Gene expression profiling of rat testis development during the early post‐natal stages. Reprod. Domest. Anim. 47: 724–731.
143 143 Johnston, D., Olivas, E., DiCandeloro, P., and Wright, W. (2011). Stage‐specific changes in GDNF expression by rat Sertoli cells: a possible regulator of the replication and differentiation of stem spermatogonia. Biol. Reprod. 85: 763–769.
144 144 Aponte, P., Soda, T., van de Kant, H., and de Rooij, D. (2006). Basic features of bovine spermatogonial culture and effects of glial cell line derived neurotrophic factor. Theriogenology 65: 1828–1847.
145 145 Harikae, K., Tsunekawa, N., Hiramatsu, R. et al. (2012). Evidence for almost complete sex‐reversal in bovine freemartin gonads: formation of seminiferous tubule‐like structures and transdifferentiation into typical testicular cell types. J. Reprod. Dev. 58: 654–660.
146 146 Russell, L. and Griswold, M. (eds.) (1993). The Sertoli Cell. Clearwater, FL: Cache River Press.
147 147 Kramer, M., de Lange, A., and Visser, M. (1964). Spermatogonia in the bull. Z. Zellforsch. 63: 735–758.
148 148 Krallinger, H. (1931). Cytologische studien an einigen haussäugetieren. Arch. Tierernahr. Tierz. 5: 127–187.
149 149 Parks, J., Lee, D., Huang, S., and Kaproth, M. (2003). Prospects for spermatogenesis in vitro. Theriogenology 59: 73–86.
150 150 Senger, P. (2005). Endocrinology of the male and spermatogenesis. In: Pathways to Pregnancy and Parturition, 2nd revised edn., 214–239. Redmond, OR: Current Conceptions Inc.
151 151 Mullins, K. and Saacke, R. (2003). Illustrated Anatomy of the Bovine Male and Female Reproductive Tract. Ephrata, PA: Germinal Dimensions Inc., Cadmus Professional Communications, Science Press Division.
152 152 Amann, R. (1962). Reproductive capacity of dairy bulls. IV. Spermatogenesis and testicular germ cell degeneration. Am. J. Anat. 110: 69–78.
153 153 Berndtson, W. and Desjardins, C. (1974). The cycle of the seminiferous epithelium and spermatogenesis in the bovine testis. Am. J. Anat. 140: 167–180.
154 154 Johnson L, Wilker C, Cerelli J. Spermatogenesis in the bull. Proceedings of the Fifteenth Technical Conference on AI and Reproduction. Columbia, MO: National Association of Animal Breeders, 1994, pp. 9–27.
155 155 Johnson, L., Varner, D., Roberts, M. et al. (2000). Efficiency of spermatogenesis: a comparative approach. Anim. Reprod. Sci. 60–61: 471–480.