Читать книгу Liquid Biofuels - Группа авторов - Страница 40
References
Оглавление1. Chadwick, D.T., McDonnell, K.P., Brennan, L.P., Chadwick, D.T., McDonnell, K.P., Brennan, L.P., Fagan, C.C., Everard, C.D., Evaluation of infrared techniques for the assessment of biomass and biofuel quality parameters and conversion technology processes: A review, Renewable and Sustainable Energy Reviews, 30, 672-681, 2014.
2. Farrell, A.E., Ethanol Can Contribute to Energy and Environmental Goals, Science, 311, 506-508, 2006.
3. Grassi, G., Bioethanol-Industrial World Perspectives, Renewable Energy World, 2000.
4. Yeĝin, S., Aureobasidium pullulans ile ksilanaz üretimine etki eden biyoproses parametrelerin belirlenmesi, GIDA/The Journal of FOOD, 2017; 42.1: 67-75.
5. Morrison, I.M., Brice, R.E., Mousdale, S.A., Biodegradation of Lignocellulosic Materials: Present Status and Future Prospects, Feeding Strategies for Improving Productivity of Ruminant Livestock in Developing Countries. pp. 191-204, Proc.Res.Co-ord. Meeting, 1989.
6. Kim, S., Dale, B.E., Global Potential Bioethanol Production from Wasted Crops and Crop Residues, Biomass and Bioenergy, 26: 361-375, 2004.
7. Ljungdahl, L.G., Eriksson, K.E., Ecology of microbial cellulose degradation, Adv. Microbiology Ecology, 8, 237-299, 1985.
8. Valenzuela, M.B., Jones, C.W., Agrawal, P.K., Batch Aqueous-Phase Reforming of Woody Biomass, Energy Fuels, 20, 1744–1752, 2006.
9. Beguin, P., Aubert, J.P., The biological degradation of cellulose, FEMS Microbiological Reviews, 13, 25–58, 1994.
10. Kim, J., Lee, H.W., Lee, S.M., Jae, J., Park, Y., Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals, Bioresource Technology, 279, 373-384, 2019.
11. Fengel, D., Wegener, G., Wood Chemistry, Ultrasturucture, Reactions, pp. 482-520, Walter De Gruyter, Verlag, 1984.
12. Sjostrom, E., Wood Chemistry: Fundamentals and Application, pp. 204-222, Academic Press, 1993.
13. Eriksson, K.E., Blanchette, R.A., Ander, P., Microbial and enzymatic dagradation of wood and wood components, pp. 225-333. Springer-Verlag KG, 1990.
14. Naidu, D.S., Hlangothi, S.P., John, M.J., Bio-Based Products from Xylan: A Review, Carbonhydrate Polymers, 179, 28-41, 2018.
15. Johansson, E., Krantz-Rultcker, C., Zhang, B. X., Chlorination and biodegradation of lignin, Soil Biology & Biochemistry, 1029-1032, 1999.
16. Nugzar, N.N., Sarkanen, S., Concescutive polymerization and depolymerization of kraft lignin by trametes cingulata, Phytochemistry, 49, 1203-1212, 1997.
17. Demirbaş, A., Biofuels, Securing the Planet’s Future Energy Needs, Energy Conversion and Management, 50, 9, 2239-2249, 2009.
18. Saha, B.C., Hemicellulose Bioconversion, Journal of Industrial Microbiology and Biotechnology, 30, 279-291, 2003.
19. McMillan, J.D., Pretreatment of Lignocellulosic Biomass, in: Enzymatic Conversion o Biomass for Fuel Production, Himmel, M. E., Baker, J. O., Overend, R. P. (Ed.), pp. 292-323, American Chemical Society, 1993.
20. Aspinall, G.O., Chemistry of Cell Wall Polysaccharides, in: The Biochemistry of Plants (A Comprehensive Treatise), 473–500, 3, Carbohydrates: Structure And Function, Academic Press, 1980.
21. Shibuya, N., Iwasaki, T., Structural Features of Rice Bran Hemicellulose, Phytochemistry, 24, 285-289, 1985.
22. Strayer, R.F., Figer, B.W., Alazrki, M.P., Cook, K., Garland, J.L., Recovery of resources for advanced life support space applications: effect of retention time on biodegradation of two crop residues in a fed-batch, continuous stirred tank reactor, Bioresource Technology, 84, 2, 119-127, 2002.
23. Guiraud, P., Steiman, R., Ait-Laydi, L., Murandi, F.S., Degradation of phenolic and chloroaromatic compounds by coprinus spp, Chemosphere, 38, 2775-2789, 1998.
24. Martins, M.A.M., Ferreira, I.C., Santos, I.M., Queiroz, M.J., Lima, N., Biodegradation of bioaccessible textile azo dyes by Phanerochaete chrysosporium, Journal of Biotechnology, 89, 91-98, 2002.
25. Higuchi, T., The Discovery of Lignin, in: Discoveries in Plant Biology, S.D.Kung, S.F. Yang (Ed.), pp. 233, World Scientific Pub., Singapore, 1998.
26. Ek, M., Gellerstedt, G., Henriksson, G., Wood Chemistry and Wood Biotechnology, pp. 308-350, Walter de Gruyter GmbH & Co. KG, 2009.
27. Erbil, N., Coruk, G., Dıĝrak, M., 2006. Kahraman Maraş Civarındaki Ekstrem Ortamlardan İzole Edilen Bakterilerde Lignin Biyodegredasyonunun Araştırılması, Science and Engineering Journal of Fırat University, 18, 4, 485-492, 2006.
28. Kumar, R., Strezov, V., Weldekidan, H., He, J., Singh, S., Kan, T., Dastjerdi, B., Lignocellulose biomass pyrolysis for bio oil production: A review of biomass pretreatment methods for proection of drop in fuels, Renewable and Sustainable Energy Reviews, 123, 109763, 2020.
29. Nunes, L.J.R., Cause, T.P., Ciolkosz, D., Biomass for energy: A review on supply chain management models, Renewable and Sustainable Energy Reviews, 120, 109658, 2020.
30. Feng, Y., Tao. L., Zheng, Z., Huang, H., Lin, F., Upgranding agricultural biomass for sustainable energy storage: Bioprocessing, electrochemistry, mechanism, Energy Storage Materials, Available online June 2020.
31. Li, Z., Guo, D., Liu, Y., Wang, H., Wang, L., Recent advances and challenges in biomass-derived porous carbon nanomaterials for supercapacitors, Chemical Engineering Journal, 397, 125418, 2020.
32. Rodriguez, M., Camacho, J.A., The development of trade of biomass in Spain: A raw material equivalent approach, Biomass and Bioenergy, 133, 105450, 2020.
33. Greetham, D., Zaky, A., Makanjuola, O., Du, C., A brief review on bioethanol production using marine biomass, marine microorganism and seawater, Current Opinion in Green and Sustainable Chemistry, 14, 53-59, 2018.
34. Bar-On, Y.M., Milo, R., The Biomass Composition of the Oceans: A Blueprint of Our Blue Planet, Cell, 179, 1451-1454, 2019.
35. Ruiz, H.A., Rodriguez-Jasso, R.M., Fernandes, B.D., Vicente, A.A., Teixeira, J.A., Hydrothermal processing, as an alternative for upgrading agriculture residue and marine biomass according to the biorefinery concept: A review, Renewable and Sustainable Energy Reviews, 21, 35-51, 2013.
36. Lee, M., Lin, Y., Chiuesh, P., Den, W., Environmental and energy assessment of biomass residues to biochar as fuel: A brief review with recommendations for future bioenergy systems, Journal of Cleaner Productions, 251, 119714, 2020.
37. Hiloidhari, M., Das, D., Baruah, D.C., Bioenergy potential from crop residue biomass in India, Renewable and Sustainable Energy Reviews, 32, 504-512, 2014.
38. Pandiyan, K., Singh, A., Singh, S., Saxena, A.K., Nain, L., Technological interventions for utilization of crop residues and weedy biomass for second generation bioethanol production, Renewable Energy, 132, 732-741, 2019.
39. Zubair, M., Wang, S., Zhang, P., Ye, J., Liang, J., Nabi, M., Zhou, Z., Tao, X., Chen, N., Sun, K., Xiao, J., Cai, Y., Biological nutrient removal and recovery from solid and liquid manure: Recent advance and perspective, Bioresource Technology, 301, 122823, 2020.
40. Neshat, S.A., Mohammadi, M., Najafpour, G.D., Lahijani, P., Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production, Renewable and Sustainable Energy Reviews, 79, 308-322, 2017.
41. Ramos-Suarez, J.L., Ritter, A., Gonzalez, J.M., Perez, A.C., Biogas from animal manure: A sustainable energy opportunity in the Canary Islands, Renewable and Sustainable Energy Reviews, 104, 137-150, 2019.
42. Kalembkiewicz, J., Chmielarz, U., Ashes from co-combustion of coal and biomass: New industrial wastes, Resources, Conservation and Recycling, 69, 109-121, 2012.
43. Chong, M., Sabaratnam, V., Shirai, Y., Hassan, M.A., Biohydrogen production from biomass and industrial wastes by dark fermentation, International Journal of Hydrogen Energy, 34, 8, 3277-3287, 2009.
44. Elliott, D.C., Thermochemical Processing of Biomass: Conversion into Fuels, pp. 200-231, John Wiley & Sons Ltd, 2011.
45. Yokoyama, S., Matsumura, Y., The Asian Biomass Handbook, pp. 21-135, The Japan Institute of Energy, 2008.
46. Ibarra-Gonzalez, P., Rong, B., A review of the current state of biofuels production from lignocellulosic biomass using thermochemical conversion routes, Chinese Journal of Chemical Engineering, 27, 7, 1523-1535, 2019.
47. Ranzi, E., Cuoci, A., Faravelli, T., Frassoldati, A., Migliavacca, G., Pierucci, S., Sommariva, S., Chemical Kinetics of Biomass Pyrolysis, Energy & Fuels, 22, 4292-430, 2008.
48. Pourkarimi, S., Hallajisani, A., Alizadehdakhel, A., Nouralishahi, A., Biofuel production through micro and macroalgae pyrolysis - A review of pyrolysis methods and process parameters, Journal of Analytical and Applied Pyrolysis, 142, 104599, 2019.
49. Konwer, D., Taylor, S.E., Gordon, B.E., Otvos, J.W., Calvin, M., Liquid Fuels from Mesua ferrea L. Seed Oil, Journal of American Oil Chemists’ Society, 66, 2, 223-226, 1989.
50. Katikaneni, S.P.R., Adjaye, J.D., Bakhshi, N.N., Catalytic Conversion of Canola Oil to Fuels and Chemical Over Various Cracking Catalyst, Canadian Journal of Chemical Engineering, 73, 484-497, 1995.
51. Ravichand, A., Anandha, M., Sivakumar, V., Calophyllum oil-a potential Bioresource for biodiesel production, International Journal of Advanced Life Science, 10, 1, 2017.
52. Shen, Y., Zhang, N., Zhang, S., Catalytic pyrolysis of biomass with potassium compounds for Co-production of high-quality biofuels and pours carbons, Energy, 190, 116431, 2020.
53. Wang, S., Yuan, C., Essakkimutlu, S., Xu, L., Cao, B., Abomohra, A.E., Qian, L., Liu, L., Hu, Y., Catalytic pyrolysis of waste clay oil to produce high quality biofuel, Journal of Analytical and Applied Pyrolysis, 141, 104633, 2019.
54. Suriapparoa, D.V., Vinu, R., Shukla, A., Haldar, S., Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residue and waste plastics combined with catalytic upgradation, Bioresource Technology, 302, 122775, 2020.
55. Wang, W., Shi, Y., Cui, Y., Li, X., Catalytic fast pyrolysis of cellulose for increasing contents of furans and aromatics in biofuel production, Journal of Analytical and Applied Pyrolysis, 131, 93-100, 2018.
56. Sanahuja-Parejo, O., Veses, A., Navarro, M.V., Lopez, J.M., Murillo, R., Callen, M.S., Garcia, T., Catalytic co-pyrolysis of grape seeds and waste tyres for the production of drop-in biofuels, Energy Conversion and Management, 171, 1202-1212, 2018.
57. Bharath, G., Rambabu, K., Hai, A., Banat, F., Taher, H., Schmidt, J.E., Show, P.L., Catalytic hydrodeoxygenation of biomass-derived pyrolysis oil over alloyed biometallic Ni3Fe nanocatalyst for high-grade biofuel production, Energy Conversion and Management, 213, 112859, 2020.
58. Bridgwater, A.V., Bridge, S.A., A review of biomass pyrolysis and pyrolysis technologies, in: Biomass Pyrolysis Liquids Upgrading and Utilisation, Bridgwater, A.V., Grassi, G. (Ed.), pp. 11–92, Elsevier, 1991.
59. Bridgwater, A.V., Bridge, S.A., Biomass pyrolysis liquids upgrading a utilisation, in: Biomass Pyrolysis Liquids Upgrading and Utilisation, Bridgwater, A.V. and Grassi, G. (Ed.), pp. 299-311, Elsevier, 1991.
60. Bridgwater, A.V., Toft, A.J, Brammer, J.G., A Techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion, Renewable and Sustainable Energy Reviews, 6, 181-248, 2002.
61. Onarheim, K., Hannula, I., Solantausta, Y., Hydrogen enhanced biofuels for transpott via fast pyrolysis of biomass: A conceptual assessment, Energy, 199, 117337, 2020.
62. Casazza, A.A., Spennati, E., Converti, A., Burca, G., Production of carbon-based biofuels by pyrolysis of exhausted Arthrospira platensis biomass after protein or lipid recovery, Fuel Processing Tachnology, 201, 106336, 2020.
63. Lappas, A.A., Samolada, M.C., Iatridis, D.K., Voutetakis, S.S., Vasalos, I.A., Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals, Fuel, 81, 2087-8095, 2002.
64. Lee, K., Pyrolysis of municipal plastic wastes separated by difference of specific gravity, Journal of Analytical and Applied Pyrolysis, 79, 1-2, 362-367, 2007.
65. Ismail, T.M., Banks, S.W., Yang, Y., Yang, H., Chen, Y., Bridgwater, A.V., Ramzy, K., El-Salam, M.A., Coal and biomass co-pyrolysis in a fluidized-bed reactor: Numerical assessment of fuel type and blending conditions, Fuel, 273, 118004, 2020.
66. Qi, F., Wright, M.M., A DEM modeling of biomass fast pyrolysis in a double auger reactor, International Journal of Heat and Mass Transfer, 150, 119308, 2020.
67. Makkawi, Y., Yu, X., Ocone, R., Parametric analysis of biomass fast pyrolysis in a downer fluidized bed reactor, Renewable Energy, 143, 1225-1234, 2019.
68. Park, H.C., Choi, H.S., Fast pyrolysis of biomass in a spouted bed reactor: Hydrodynamics, heat transfer and chemical reaction, Renewable Energy, 143, 1268-1284, 2019.
69. Ben-Iwo, J., Manovic, V., and Longhurst, P., Biomass resources and biofuels potential for the production of transportation fuels in Nigeria, Renewable and Sustainable Energy Reviews, 63, 172–192, 2016.
70. Basumatary, V., Saikia, R., Narzai, R., Bordoloi, N., Gogoi, L., Sur, D., Bhuyan, N., Kataki, R., Tea factory waste as a feedstock for thermo-chemical conversion to biofuel and biomaterial, materialstoday: PROCEEDİNGS, 5, 11, 2, 23413-23422, 2018.
71. Duan, P., Jin, B., Xu, Y., Yang, Y., Bai, X., Wang, F., Zhang, L., Miao, J., Thermochemical conversion of chlorella pyrenoidosa to liquid biofuels, Bioresource Technology, 133, 197-205, 2013.
72. Long, F., Zhai, Q., Liu, P., Cao, X., Jiang, X., Wang, F., Wei, L., Liu, C., Jiang, J., Xu, J., Catalytic conversion of triglycerides by metal-based catalysts and subsequent modification of molecular structure by ZSM-5 and Raney Ni for the production of high-value biofuel, Renewable Energy, 157, 1072-1080, 2020.
73. Bui, N.Q., Fongarland, P., Rataboul, F., Dartiguelongue, C., Charon, N., Vallee, C., Essayem, N., Controlled pinewood fraction with supercritical ethanol: A prerequisite toward pinewood conversion into chemical and biofuels, Comptes Redus Chimie, 21, 6, 555-562, 2018.
74. Lee, J.H., Hwang, H., Choi, J.W., Effect of transition metals on hydrothermal liquefaction of empty fruid bunches (EFB) for conversion to biofuel and valuable chemicals, Energy, 162, 1-9, 2018.
75. Dutta, S., De, S., Alam, I., Abu-Omar, M.M., Saha, B., Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts, Journal of Catalysis, 288, 8-15, 2012.
76. Zhang, Z., Cheng, J., Qui, Y., Zhang, X., Zhou, J., Cen, K., Competitive conversion pathway of methyl palmitate to produce jet biofuel over Ni/desilicated meso-Y zeolite catalyst, Fuel, 244, 472-478, 2019.
77. Hess, D., Quinn, J.C., Impact of inorganic contaminants on microalgal biofuel production through multiple conversion pathway, Biomass and Bioenergy, 119, 273-245, 2018.
78. Badwal, S.P.S., Giddey, S.S., Munnings, C., Bhatt, A.I., Hollenkamp, A.F., Emerging electrochemical energy conversion and storage technologies (open access), Frontiers in Chemistry, 2, 79, 2014.
79. Akalın, M.K., Tekin, K., Karagöz, S., Hydrothermal liquefaction of cornelian cherry stones for bio-oil production, Bioresource Technology, 110, 682-687, 2012.
80. Basu, P., Biomass Gasification and Pyrolysis, pp. 305-325, Academic Press, 2010.
81. Hassan, H., Lim, J.K., Hameed, B.H., Recent Progress on Biomass CoPyrolysis Conversion into Highquality Bio-Oil, Bioresource Technology, 221, 645–655, 2016.
82. Dillon, H.S., Laan, T., Dillon, H.S., Biofuels-At What Costs?: Government Support for Ethanol and Biodiesel in Indonesia, pp. 28-36, International Institute for Sustainable Development, 2008.
83. Katahira, S., Mizuike, A., Fukuda, H., et al., Ethanol Fermentation from Lignocellulosic Hydrolysate by a Recombinant Xylose- and Cellooligosaccharide-Assimilating Yeast Strain, Applied Microbiology Biotechnology, 72, 1136–1143, 2006.
84. Bridgwater, A.V., Renewable fuels and chemicals by thermal prossesing of biomass, Chemical Engineering Journal, 91, 87-102, 2003.
85. Balat, M., Balat, H., Öz, C., Progress In Bioethanol Processing, Progress In Energy and Combustion Science, 34, 551–573, 2008.
86. Prasad, R.K., Chatterjee, S., Mazumder, P.B., Gupta, S.K., Sharma, S.S., Vairale, M.G., Datta, S., Dwivedi, S.K., Gupta, D.K., Bioethanol production from waste lignocelluloses: A review on microbial degradation potential, Chemosphere, 231, 588-606, 2019.
87. Bridgwater, T., Review Biomass for Energy, Journal of the Science of Food and Agriculture, 86, 1755-1768, 2006.
88. Zabed, H., Sahu, J.N., Suely, A., Boyce, A.N., Faruq, G. Bioethanol production from renewable sources : Current perspectives and technological progress, Renewable and Sustainable Energy Reviews, 71, 475-501, 2017.
89. Aditiya, H.B., Mahlia, T.M.I., Chong, W.T., Nur, H., Sebayang, A.H., Second generation bioethanol production: A critical review, Renewable and Sustainable Energy Reviews, 66, 631-653, 2016.
90. Jambo, S.A., Abdulla, R., Mohd Azhar, S.H., Marbawi, H., Gansau, J.A., Ravindra, P., A review on third generation bioethanol feedstock. Renewable and Sustainable Energy Reviews, 65, 756-769, 2016.
91. Madson, P.W., Lococo, D.B., Recovery of Volatile Products from Dilute High-Fouling Process Streams, Biotechnology and Applied Biochemistry, 84–86, 1049–1061, 2000.
92. Lee, S.Y., Park J.H., Jang, S.H., Nielsen, L.K., Kim, J., Jung, K.S., Fermentative Butanol Production by Clostridia, Biotechnology and Bioengineering, 101, 2, 209-228, 2008.
93. Ni, Y., Sun, Z., Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China, Applied Microbiology and Biotechnology, 83, 415-423, 2009.
94. Qureshi, N., Ezeji, T.C. Butanol, a superior biofuel production from agricultural residues (renewable biomass): recent progress in technology, Biofuels, Bioproducts and Biorefinery, 2, 319-330, 2008.
95. Qureshi, N., Blaschek, H. P., Butanol production from agricultural mass, Food Biotechnology, 2, 526-549, 2006.
96. Li, Y., Tang, W., Chen, Y., Liu, J., Lee, C.F., Potential of acetone-butanol-ethanol (ABE) as a biofuel, Fuel, 242, 673-686, 2019.
97. Demirbaş, A. 2008. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections, Energy Conversion and Management, 49, 2106-2116.
98. McKendry, P., Energy Production From Biomass (Part 2): Conversion Technologies, Bioresource Technology, 84, 47-54, 2002.
99. Lethomaki, Biogas Production from Energy Crops and Crop Residues, Ph. D. Thesis, University of Jyväskylä, ISBN 951-39-2559-5, Finland, 2006.
100. Seadi, T.A., Danish Centralized Biogas Plants - Plant Descriptions, University of Southern Denmark, Bioenergy Department, 2000.
101. Kucharska, K., Holowacz, I., Konopacka-Lyskawa, D., Rybarczyk, P., Kaminski, M., Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels, Renewable Energy, 129, 384-408, 2018.
102. Dursun, S., Ozdemir, Z.O., Anaerobik bakteriler kullanılarak atılardan biyogaz üretimi, ResearchGate, 2016.
103. Yu, H.W., Samani, Z., Hanson, A., Smith, G., Energy recovery from grass using two-phase anaerobic digestion, Waste Management, 22, 1-5, 2002.
104. Boyd, R., Internalising Environmental Benefits of Anaerobic Digestion of Pig Slurry in Norfolk, University of East Anglia, 2000.
105. Yadava, L.S., Hesse, P.R., The Development and Use of Biogas Technology in Rural Areas of Asia. Improving Soil Fertility through Organic Recycling, FAO/UNDP Regional Project RAS/75/004, Project Field Document No. 10. 1981.
106. Putun, A.E., Koçkar, O.M., Yorgun, S., Gerçel, H.F., Andersen, J., Snape, C.E., Putun, E., Fixed-Bed Pyrolysis and Hydropyrolysis of Sunflower Baggasse: Product YieIds and Compositions, Fuel Process. Technology, 46, 49-62, 1996.
107. Putun, A.E., Ozbay, N., Koçkar, O.M., Piltim, E., Fixed-Bed Pyrolysis of Cottonseed Cake: Product Yields and Compositions, Energy Sources, 905-915, 1997.
108. Rostrup-Nielsen, J.R., Dybkjaer, I., Aasberg-Petersen, K., Aasberg-Ptersen, K., Hansen, J.H.B., Christensen, T.S., Christensen, P.S., Nielsen, C.S., Madsen, S.E.L.W., Technologies for large-scale gas conversion, Applied Catalysis A: General, 221, 1-2, 379-387, 2001.
109. Soltes, E.J., Pyrolysis Oils from Biomass Producing, Analysing and Upgrading, in: ACS Symposium Series 376, Sottes, J.E., Milne T.A. (Ed), pp. 356, Washington, D. C., 1988.
110. Jenkins, B.M., Sumner, H.R., Harvesting and Handling Agricultural Residue for Energy, Transactions of the ASAE, 29, 3, 824-836, 1986.
111. Cannon, J., Clean Hydrogen Transportation: A Market Opportunity for Renewable Energy. REPP Issue Brief, 7, 20, 1997.
112. Sun, X., Atiyeh, H.K., Huhnke, R.L., Tanner, R.S., Syngas fermentation process development for production of biofuels and chemicals: A review, Bioresource Technology Reports, 7, 100279, 2019.
113. Doku, A., Falco, S., Biofuels in developing countries: Are comparative advantages enough?, Energy Policy, 44, 101-117, 2012.
114. Padilla-Rivera, A., Paredes, M.G., Güereca, L.P., A systematic review of the sustainability assessment of bioenergy: The case of gaseous biofuels, Biomass and Bioenergy, 125, 79-94, 2019.
115. Carneiro, M.L.N.M., Pradelle, F., Braga, S.L., Gomes, M.S.P., Martins, A.R.F.A., Turkovics, F., Pradelle, R.N.C., Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA), Renewable and Sustainable Energy Reviews, 73: 632-653, 2017.
116. Mofijur, M., Rasul, M.G., Hyde, J., Azad, A.K., Mamat, R., Bhuiya, M.M.K., Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction, Renewable and Sustainable Energy Reviews, 53: 265-278, 2016.
117. Adewuyi, A., Challenges and prospects of renewable energy in Nigeria: A case of bioethanol and biodiesel production, Energy Reports, 6, 4, 77-88, 2020.
118. Tan, I.S., Lam, M.K., Foo, H.C.Y., Lim, S., Lee, K.T., Advances of macroalgae biomass for the third generation of bioethanol production, Chinese Journal of Chemical Engineering, 28, 2, 502-517, 2020.
119. Ayodele, B.V., Alsaffar, M.A., Mustapa, S.I., An overview of integration opportunities for sustainable bioethanol production from first- and second-generation sugar-based feedstocks, Journal of Cleaner Production, 245, 118857, 2020.
120. Zhu, L., Yan, C., Li, Z., Microalgal cultivation with biogas slurry for biofuel production, Bioresource Technology, 220, 629-636, 2016.
121. Xue, S., Song, J., Wang, X., Shang, Z., Sheng, C., Li, C., Zhu, Y., Liu, J. A systematic comparison of biogas development and related policies between China and Europe and corresponding insights, Renewable and Sustainable Energy Reviews, 117, 109474, 2020.
122. Achinas, S., Jan, G., Euverink, W., Rambling facets of manure-based biogas production in Europe: A briefing, Renewable and Sustainable Energy Reviews, 119, 109566, 2020.
123. Zabed, H.M., Akter, S., Yun, J., Zhang, G., Awad, F.N., Qi, X., Sabu, J.N., Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production, Renewable and Sustainable Energy Reviews, 105, 105-128, 2019.
124. Stamenkovic, O.S., Siliveru, K., Velijkovic, V.B., Bankovic-Ilic, I.B., Tasic, M.B., Ciampitti, I.A., Dalovic, I.G., Mitrovic, P.M., Sikora, V.S., Prasad, P.V.V., Production of biofuels from sorghum, Renewable and Sustainable Energy Reviews, 124, 109769, 2020.
125. Vasquez, M.C., Silva, E.E., Castillo, E.F., Hydrotreatment of vegetable oils: A review of the technologies and its developments for jet biofuel production, Biomass and Bioenergy, 105, 197-206, 2017.
126. Wirth, R., Lakatos, G., Böjti, T., Maroti, G., Bagi, Z., Rakhely, G., Kovacs, K.L., Anaerobic gaseous biofuel production using microalgal biomass – A review, Anaerobe, 52, 1-8, 2018.
127. Zabed, H.M., Akter, S., Yun, J., Zhang, G., Qi, X., Biogas from microalgae: Technologies, challenges and opportunities, Renewable and Sustainable Energy Reviews, 117, 109503, 2020.
128. Siquire, J.G.W.S., Rodrigues, C., Vanderberghe, L.P.S., Woiciechowski, A.L., Soccol, C.R., Current advances in on site cellulose production and application on lignocellulosic biomass conversion to biofuels; A review, Biomass and Bioenergy, 132, 105419, 2020.
*Corresponding author: iremdenz@gmail.com