Читать книгу Pathology of Genetically Engineered and Other Mutant Mice - Группа авторов - Страница 111

References

Оглавление

1 Norris, D.P. and Grimes, D.T. (2012). Mouse models of ciliopathies: the state of the art. Dis. Models Mech. 5 (3): 299–312.

2 Singla, V. and Reiter, J.F. (2006). The primary cilium as the cell's antenna: signaling at a sensory organelle. Science 313 (5787): 629–633.

3 Briscoe, J. and Therond, P.P. (2013). The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol. 14 (7): 416–429.

4 Wallmeier, J., Nielsen, K.G., Kuehni, C.E. et al. (2020). Motile ciliopathies. Nat. Rev. Dis. Primers 6 (1): 77.

5 Kempeneers, C. and Chilvers, M.A. (2018). To beat, or not to beat, that is question! The spectrum of ciliopathies. Pediatr. Pulmonol. 53 (8): 1122–1129.

6 Davis, E.E. and Katsanis, N. (2012). The ciliopathies: a transitional model into systems biology of human genetic disease. Curr. Opin. Genet. Dev. 22 (3): 290–303.

7  Schofield, P.N., Vogel, P., Gkoutos, G.V., and Sundberg, J.P. (2012). Exploring the elephant: histopathology in high‐throughput phenotyping of mutant mice. Dis. Models Mech. 5 (1): 19–25.

8 Goetz, S.C. and Anderson, K.V. (2010). The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet. 11 (5): 331–344.

9 Bloodgood, R.A. (2010). Sensory reception is an attribute of both primary cilia and motile cilia. J. Cell Sci. 123 (Pt 4): 505–509.

10 Sigg, M.A., Menchen, T., Lee, C. et al. (2017). Evolutionary proteomics uncovers ancient associations of cilia with signaling pathways. Dev. Cell 43 (6): 744–62 e11.

11 Heydeck, W., Fievet, L., Davis, E.E., and Katsanis, N. (2018). The complexity of the cilium: spatiotemporal diversity of an ancient organelle. Curr. Opin. Cell Biol. 55: 139–149.

12 Christie, K.R. and Blake, J.A. (2018). Sensing the cilium, digital capture of ciliary data for comparative genomics investigations. Cilia 7: 3.

13 van Dam, T.J., Wheway, G., and Slaats, G.G., SYSCILIA Study Group et al. (2013). The SYSCILIA gold standard (SCGSv1) of known ciliary components and its applications within a systems biology consortium. Cilia 2 (1): 7.

14 Rohatgi, R., Milenkovic, L., and Scott, M.P. (2007). Patched1 regulates hedgehog signaling at the primary cilium. Science 317 (5836): 372–376.

15 Reiter, J.F. and Leroux, M.R. (2017). Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 18 (9): 533–547.

16 Goncalves, J. and Pelletier, L. (2017). The ciliary transition zone: finding the pieces and assembling the gate. Mol. Cells 40 (4): 243–253.

17 Satir, P. and Christensen, S.T. (2007). Overview of structure and function of mammalian cilia. Annu. Rev. Physiol. 69: 377–400.

18 Afzelius, B.A. (1976). A human syndrome caused by immotile cilia. Science 193 (4250): 317–319.

19 Afzelius, B.A. (1999). Asymmetry of cilia and of mice and men. Int. J. Dev. Biol. 43 (4): 283–286.

20 Fliegauf, M., Benzing, T., and Omran, H. (2007). When cilia go bad: cilia defects and ciliopathies. Nat. Rev. Mol. Cell Biol. 8 (11): 880–893.

21 Vogel, P., Read, R.W., Hansen, G.M. et al. (2012). Congenital hydrocephalus in genetically engineered mice. Vet. Pathol. 49 (1): 166–181.

22 Rott, H.D. (1979). Kartagener's syndrome and the syndrome of immotile cilia. Hum. Genet. 46 (3): 249–261.

23 Zariwala, M.A., Omran, H., and Ferkol, T.W. (2011). The emerging genetics of primary ciliary dyskinesia. Proc. Am. Thorac. Soc. 8 (5): 430–433.

24 Meeks, M. and Bush, A. (2000). Primary ciliary dyskinesia (PCD). Pediatr. Pulmonol. 29 (4): 307–316.

25 Geremek, M. and Witt, M. (2004). Primary ciliary dyskinesia: genes, candidate genes and chromosomal regions. J. Appl. Genet. 45 (3): 347–361.

26 Vogel, P., Hansen, G., Fontenot, G., and Read, R. (2010). Tubulin tyrosine ligase‐like 1 deficiency results in chronic rhinosinusitis and abnormal development of spermatid flagella in mice. Vet. Pathol. 47 (4): 703–712.

27 Vogel, P., Read, R., Hansen, G.M. et al. (2010). Situs inversus in Dpcd/Poll−/−, Nme7−/−, and Pkd1l1−/− mice. Vet. Pathol. 47 (1): 120–131.

28 Banizs, B., Pike, M.M., Millican, C.L. et al. (2005). Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development 132 (23): 5329–5339.

29 Ibanez‐Tallon, I., Pagenstecher, A., Fliegauf, M. et al. (2004). Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum. Mol. Genet. 13 (18): 2133–2141.

30 Lee, L., Campagna, D.R., Pinkus, J.L. et al. (2008). Primary ciliary dyskinesia in mice lacking the novel ciliary protein Pcdp1. Mol. Cell. Biol. 28 (3): 949–957.

31 Goto, J., Tezuka, T., Nakazawa, T. et al. (2008). Loss of Fyn tyrosine kinase on the C57BL/6 genetic background causes hydrocephalus with defects in oligodendrocyte development. Mol. Cell. Neurosci. 38 (2): 203–212.

32 Itoh, K., Cheng, L., Kamei, Y. et al. (2004). Brain development in mice lacking L1–L1 homophilic adhesion. J. Cell Biol. 165 (1): 145–154.

33 Rolf, B., Kutsche, M., and Bartsch, U. (2001). Severe hydrocephalus in L1‐deficient mice. Brain Res. 891 (1–2): 247–252.

34 Nonaka, S., Tanaka, Y., Okada, Y. et al. (1998). Randomization of left–right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95 (6): 829–837.

35 Capdevila, J., Vogan, K.J., Tabin, C.J., and Izpisua Belmonte, J.C. (2000). Mechanisms of left–right determination in vertebrates. Cell 101 (1): 9–21.

36 Levin, M. (2005). Left–right asymmetry in embryonic development: a comprehensive review. Mech. Dev. 122 (1): 3–25.

37 Mercola, M. and Levin, M. (2001). Left–right asymmetry determination in vertebrates. Annu. Rev. Cell Dev. Biol. 17: 779–805.

38 Ramsdell, A.F. (2005). Left–right asymmetry and congenital cardiac defects: getting to the heart of the matter in vertebrate left–right axis determination. Dev. Biol. 288 (1): 1–20.

39 Escalier, D. (2006). Knockout mouse models of sperm flagellum anomalies. Hum. Reprod. Update 12 (4): 449–461.

40 Sironen, A., Shoemark, A., Patel, M. et al. (2020). Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell. Mol. Life Sci. 77 (11): 2029–2048.

41 Inaba, K. and Mizuno, K. (2016). Sperm dysfunction and ciliopathy. Reprod. Med. Biol. 15 (2): 77–94.

42 Afzelius, B.A., Camner, P., and Mossberg, B. (1978). On the function of cilia in the female reproductive tract. Fertil. Steril. 29 (1): 72–74.

43  Girardet, L., Augiere, C., Asselin, M.P., and Belleannee, C. (2019). Primary cilia: biosensors of the male reproductive tract. Andrology 7 (5): 588–602.

44 Berbari, N.F., O'Connor, A.K., Haycraft, C.J., and Yoder, B.K. (2009). The primary cilium as a complex signaling center. Curr. Biol. 19 (13): R526–R535.

45 Anvarian, Z., Mykytyn, K., Mukhopadhyay, S. et al. (2019). Cellular signalling by primary cilia in development, organ function and disease. Nat. Rev. Nephrol. 15 (4): 199–219.

46 Pan, A., Chang, L., Nguyen, A., and James, A.W. (2013). A review of hedgehog signaling in cranial bone development. Front. Physiol. 4: 61.

47 Olbrich, H., Fliegauf, M., Hoefele, J. et al. (2003). Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto‐retinal degeneration and hepatic fibrosis. Nat. Genet. 34 (4): 455–459.

48 Otto, E.A., Schermer, B., Obara, T. et al. (2003). Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left‐right axis determination. Nat. Genet. 34 (4): 413–420.

49 Loftus, H. and Ong, A.C. (2012). Cystic kidney diseases: many ways to form a cyst. Pediatr. Nephrol. 28: 33–49.

50 Raghavan, V. and Weisz, O.A. (2016). Discerning the role of mechanosensors in regulating proximal tubule function. Am. J. Physiol. Renal Physiol. 310 (1): F1–F5.

51 Luyten, A., Su, X., Gondela, S. et al. (2010). Aberrant regulation of planar cell polarity in polycystic kidney disease. J. Am. Soc. Nephrol. 21 (9): 1521–1532.

52 Vogel, P., Gelfman, C.M., Issa, T. et al. (2015). Nephronophthisis and retinal degeneration in tmem218−/− mice: a novel mouse model for Senior–Loken syndrome? Vet. Pathol. 52 (3): 580–595.

53 Bujakowska, K.M., Liu, Q., and Pierce, E.A. (2017). Photoreceptor cilia and retinal ciliopathies. Cold Spring Harbor Perspect. Biol. 9 (10): 1–27.

54 Chang, B., Khanna, H., Hawes, N. et al. (2006). In‐frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early‐onset retinal degeneration in the rd16 mouse. Hum. Mol. Genet. 15 (11): 1847–1857.

55 Westfall, J.E., Hoyt, C., Liu, Q. et al. (2010). Retinal degeneration and failure of photoreceptor outer segment formation in mice with targeted deletion of the Joubert syndrome gene, Ahi1. J. Neurosci. 30 (26): 8759–8768.

56 Won, J., Gifford, E., Smith, R.S. et al. (2009). RPGRIP1 is essential for normal rod photoreceptor outer segment elaboration and morphogenesis. Hum. Mol. Genet. 18 (22): 4329–4339.

57 Won, J., Marin de Evsikova, C., Smith, R.S. et al. (2011). NPHP4 is necessary for normal photoreceptor ribbon synapse maintenance and outer segment formation, and for sperm development. Hum. Mol. Genet. 20 (3): 482–496.

58 Zhao, Y., Hong, D.H., Pawlyk, B. et al. (2003). The retinitis pigmentosa GTPase regulator (RPGR)‐interacting protein: subserving RPGR function and participating in disk morphogenesis. Proc. Natl. Acad. Sci. U. S. A. 100 (7): 3965–3970.

59 Insinna, C. and Besharse, J.C. (2008). Intraflagellar transport and the sensory outer segment of vertebrate photoreceptors. Dev. Dyn. 237 (8): 1982–1992.

60 Pazour, G.J., Baker, S.A., Deane, J.A. et al. (2002). The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. J. Cell Biol. 157 (1): 103–113.

61 Liu, Q., Lyubarsky, A., Skalet, J.H. et al. (2003). RP1 is required for the correct stacking of outer segment discs. Invest. Ophthalmol. Visual Sci. 44 (10): 4171–4183.

62 Campione, M. and Franco, D. (2016). Current perspectives in cardiac laterality. J. Cardiovasc. Dev. Dis. 3 (4): 1–18.

63 Tan, S.Y., Rosenthal, J., Zhao, X.Q. et al. (2007). Heterotaxy and complex structural heart defects in a mutant mouse model of primary ciliary dyskinesia. J. Clin. Invest. 117 (12): 3742–3752.

64 Bisgrove, B.W., Morelli, S.H., and Yost, H.J. (2003). Genetics of human laterality disorders: insights from vertebrate model systems. Annu. Rev. Genomics Hum. Genet. 4: 1–32.

65 Bohun, C.M., Potts, J.E., Casey, B.M., and Sandor, G.G. (2007). A population‐based study of cardiac malformations and outcomes associated with dextrocardia. Am. J. Cardiol. 100 (2): 305–309.

66 Kennedy, M.P., Omran, H., Leigh, M.W. et al. (2007). Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation 115 (22): 2814–2821.

67 Klena, N.T., Gibbs, B.C., and Lo, C.W. (2017). Cilia and ciliopathies in congenital heart disease. Cold Spring Harbor Perspect. Biol. 9 (8): 1–18.

68 Yang, J., Andre, P., Ye, L., and Yang, Y.Z. (2015). The Hedgehog signalling pathway in bone formation. Int. J. Oral Sci. 7 (2): 73–79.

69 Halbritter, J., Bizet, A.A., Schmidts, M. et al. (2013). Defects in the IFT‐B component IFT172 cause Jeune and Mainzer–Saldino syndromes in humans. Am. J. Hum. Genet. 93 (5): 915–925.

70 Schmidts, M., Frank, V., Eisenberger, T. et al. (2013). Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney disease. Hum. Mutat. 34 (5): 714–724.

71 Zaghloul, N.A. and Brugmann, S.A. (2011). The emerging face of primary cilia. Genesis 49 (4): 231–246.

72 Schock, E.N. and Brugmann, S.A. (2017). Discovery, diagnosis, and etiology of craniofacial ciliopathies. Cold Spring Harbor Perspect. Biol. 9 (9): 1–14.

73 Adel Al‐Lami, H., Barrell, W.B., and Liu, K.J. (2016). Micrognathia in mouse models of ciliopathies. Biochem. Soc. Trans. 44 (6): 1753–1759.

74 Marshall, W.F. (2008). The cell biological basis of ciliary disease. J. Cell Biol. 180 (1): 17–21.

75 Babbs, C., Furniss, D., Morriss‐Kay, G.M., and Wilkie, A.O. (2008). Polydactyly in the mouse mutant Doublefoot involves altered Gli3 processing and is caused by a large deletion in cis to Indian hedgehog. Mech. Dev. 125 (5–6): 517–526.

76 Haycraft, C.J., Banizs, B., Aydin‐Son, Y. et al. (2005). Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet. 1 (4): e53.

77 Rigueur, D. and Lyons, K.M. (2014). Whole‐mount skeletal staining. Methods Mol. Biol. 1130: 113–121.

78 Guemez‐Gamboa, A., Coufal, N.G., and Gleeson, J.G. (2014). Primary cilia in the developing and mature brain. Neuron 82 (3): 511–521.

79 Breunig, J.J., Sarkisian, M.R., Arellano, J.I. et al. (2008). Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. Proc. Natl. Acad. Sci. U. S. A. 105 (35): 13127–13132.

80 Han, Y.G., Spassky, N., Romaguera‐Ros, M. et al. (2008). Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat. Neurosci. 11 (3): 277–284.

81 Spassky, N., Han, Y.G., Aguilar, A. et al. (2008). Primary cilia are required for cerebellar development and Shh‐dependent expansion of progenitor pool. Dev. Biol. 317 (1): 246–259.

82 Lee, J.E. and Gleeson, J.G. (2011). Cilia in the nervous system: linking cilia function and neurodevelopmental disorders. Curr. Opin. Neurol. 24 (2): 98–105.

83 Gressens, P. (2006). Pathogenesis of migration disorders. Curr. Opin. Neurol. 19 (2): 135–140.

84 Louie, C.M. and Gleeson, J.G. (2005). Genetic basis of Joubert syndrome and related disorders of cerebellar development. Hum. Mol. Genet. 14 (2): R235–R242.

85 Bashford, A.L. and Subramanian, V. (2019). Mice with a conditional deletion of Talpid3 (KIAA0586) – a model for Joubert syndrome. J. Pathol. 248 (4): 396–408.

86 Jones, C., Roper, V.C., Foucher, I. et al. (2008). Ciliary proteins link basal body polarization to planar cell polarity regulation. Nat. Genet. 40 (1): 69–77.

87 Imtiaz, A., Belyantseva, I.A., Beirl, A.J. et al. (2018). CDC14A phosphatase is essential for hearing and male fertility in mouse and human. Hum. Mol. Genet. 27 (5): 780–798.

88 McEwen, D.P., Jenkins, P.M., and Martens, J.R. (2008). Olfactory cilia: our direct neuronal connection to the external world. Curr. Top. Dev. Biol. 85: 333–370.

89 Jenkins, P.M., McEwen, D.P., and Martens, J.R. (2009). Olfactory cilia: linking sensory cilia function and human disease. Chem. Senses 34 (5): 451–464.

90 McIntyre, J.C., Davis, E.E., Joiner, A. et al. (2012). Gene therapy rescues cilia defects and restores olfactory function in a mammalian ciliopathy model. Nat. Med. 18 (9): 1423–1428.

91 Kulaga, H.M., Leitch, C.C., Eichers, E.R. et al. (2004). Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Nat. Genet. 36 (9): 994–998.

92 Acs, P., Bauer, P.O., Mayer, B. et al. (2015). A novel form of ciliopathy underlies hyperphagia and obesity in Ankrd26 knockout mice. Brain Struct. Funct. 220 (3): 1511–1528.

93 Vaisse, C., Reiter, J.F., and Berbari, N.F. (2017). Cilia and obesity. Cold Spring Harbor Perspect. Biol. 9 (7): 1–13.

94 Mukhopadhyay, S. and Jackson, P.K. (2013). Cilia, tubby mice, and obesity. Cilia 2: 1.

95 Stratigopoulos, G., Burnett, L.C., Rausch, R. et al. (2016). Hypomorphism of Fto and Rpgrip1l causes obesity in mice. J. Clin. Invest. 126 (5): 1897–1910.

96 Khanna, H., Davis, E.E., Murga‐Zamalloa, C.A. et al. (2009). A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies. Nat. Genet. 41 (6): 739–745.

97 Louie, C.M., Caridi, G., Lopes, V.S. et al. (2010). AHI1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis. Nat. Genet. 42 (2): 175–180.

98 Rachel, R.A., May‐Simera, H.L., Veleri, S. et al. (2012). Combining Cep290 and Mkks ciliopathy alleles in mice rescues sensory defects and restores ciliogenesis. J. Clin. Invest. 122 (4): 1233–1245.

99 Gattone, V.H. 2nd, MacNaughton, K.A., and Kraybill, A.L. (1996). Murine autosomal recessive polycystic kidney disease with multiorgan involvement induced by the cpk gene. Anat. Rec. 245 (3): 488–499.

100 Ricker, J.L., Gattone, V.H. 2nd, Calvet, J.P., and Rankin, C.A. (2000). Development of autosomal recessive polycystic kidney disease in BALB/c‐cpk/cpk mice. J. Am. Soc. Nephrol. 11 (10): 1837–1847.

101 Cook, S.A., Collin, G.B., Bronson, R.T. et al. (2009). A mouse model for Meckel syndrome type 3. J. Am. Soc. Nephrol. 20 (4): 753–764.

102 Zaki, M.S., Sattar, S., Massoudi, R.A., and Gleeson, J.G. (2011). Co‐occurrence of distinct ciliopathy diseases in single families suggests genetic modifiers. Am. J. Med. Genet. Part A 155A (12): 3042–3049.

103 Wolf, M.T. and Hildebrandt, F. (2011). Nephronophthisis. Pediatr Nephrol. 26 (2): 181–194.

104 Beales, P.L., Badano, J.L., Ross, A.J. et al. (2003). Genetic interaction of BBS1 mutations with alleles at other BBS loci can result in non‐Mendelian Bardet–Biedl syndrome. Am. J. Hum. Genet. 72 (5): 1187–1199.

105 Hildebrandt, F., Benzing, T., and Katsanis, N. (2011). Ciliopathies. N. Engl. J. Med. 364 (16): 1533–1543.

106 Chaki, M., Hoefele, J., Allen, S.J. et al. (2011). Genotype–phenotype correlation in 440 patients with NPHP‐related ciliopathies. Kidney Int. 80 (11): 1239–1245.

Pathology of Genetically Engineered and Other Mutant Mice

Подняться наверх