Читать книгу Biomolecular Engineering Solutions for Renewable Specialty Chemicals - Группа авторов - Страница 60

References

Оглавление

1 Ahn, W. S., Park, S. J., & Lee, S. Y. (2001). Production of poly (3‐hydroxybutyrate) from whey by cell recycle fed‐batch culture of recombinant Escherichia coli. Biotechnology Letters, 23(3), 235–240.

2 Alquézar, B., Rodríguez, A., de la Peña, M., & Peña, L. (2017). Genomic analysis of terpene synthase family and functional characterization of seven sesquiterpene synthases from Citrus sinensis. Frontiers in Plant Science, 8, 1481.

3 Ashiuchi, M., Shimanouchi, K., Horiuchi, T., Kamei, T., & Misono, H. (2006). Genetically engineered poly‐γ‐glutamate producer from Bacillus subtilis ISW1214. Bioscience, Biotechnology, and Biochemistry, 70(7), 1794–1797.

4  Babaei, M., Rueksomtawin Kildegaard, K., Niaei, A., Hosseini, M., Ebrahimi, S., Sudarsan, S., … & Borodina, I. (2019). Engineering oleaginous yeast as the host for fermentative succinic acid production from glucose. Frontiers in Bioengineering and Biotechnology, 7, 361.

5 Baebprasert, W., Jantaro, S., Khetkorn, W., Lindblad, P., & Incharoensakdi, A. (2011). Increased H2 production in the cyanobacterium Synechocystis sp. strain PCC 6803 by redirecting the electron supply via genetic engineering of the nitrate assimilation pathway. Metabolic Engineering, 13(5), 610–616.

6 Balabanova, L. A., Gafurov, Y. M., Pivkin, M. V., Terentyeva, N. A., Likhatskaya, G. N., & Rasskazov, V. A. (2012). An extracellular S1‐type nuclease of marine fungus Penicillium melinii. Marine Biotechnology, 14(1), 87–95.

7 Bandyopadhyay, A., Stöckel, J., Min, H., Sherman, L. A., & Pakrasi, H. B. (2010). High rates of photobiological H 2 production by a cyanobacterium under aerobic conditions. Nature Communications, 1(1), 1–7.

8 Bentley, F. K., Zurbriggen, A., & Melis, A. (2014). Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Molecular Plant, 7(1), 71–86.

9 Ben‐Zur, N., & Goldman, D. M. (2007). γ‐Poly glutamic acid: a novel peptide for skin care. Cosmetics and Toiletries, 122(4).

10 Bhattacharyya, D., Hestekin, J. A., Brushaber, P., Cullen, L., Bachas, L. G., & Sikdar, S. K. (1998). Novel poly‐glutamic acid functionalized microfiltration membranes for sorption of heavy metals at high capacity. Journal of Membrane Science, 141(1), 121–135.

11 Bolotin, A., Wincker, P., Mauger, S., Jaillon, O., Malarme, K., Weissenbach, J., … & Sorokin, A. (2001). The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Research, 11(5), 731–753.

12 Bothfeld, W., Kapov, G., & Tyo, K. E. (2017). A glucose‐sensing toggle switch for autonomous, high productivity genetic control. ACS Synthetic Biology, 6(7), 1296–1304.

13 Brower, V. (2008). Back to nature: extinction of medicinal plants threatens drug discovery.

14 Budde, C. F., Riedel, S. L., Willis, L. B., Rha, C., & Sinskey, A. J. (2011). Production of poly (3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Applied and Environmental Microbiology, 77(9), 2847–2854.

15 Buldum, G., Bismarck, A., & Mantalaris, A. (2018). Recombinant biosynthesis of bacterial cellulose in genetically modified Escherichia coli. Bioprocess and Biosystems Engineering, 41(2), 265–279.

16 Cameron, V., & Uhlenbeck, O. C. (1977). 3'‐Phosphatase activity in T4 polynucleotide kinase. Biochemistry, 16(23), 5120–5126.

17 Candela, T., & Fouet, A. (2006). Poly‐gamma‐glutamate in bacteria. Molecular Microbiology, 60(5), 1091–1098.

18  Cannon, R. E., & Anderson, S. M. (1991). Biogenesis of bacterial cellulose. Critical Reviews in Microbiology, 17(6), 435–447.

19 Cao, M., Feng, J., Sirisansaneeyakul, S., Song, C., & Chisti, Y. (2018). Genetic and metabolic engineering for microbial production of poly‐γ‐glutamic acid. Biotechnology Advances, 36(5), 1424–1433.

20 Carrieri, D., Wawrousek, K., Eckert, C., Yu, J., & Maness, P. C. (2011). The role of the bidirectional hydrogenase in cyanobacteria. Bioresource Technology, 102(18), 8368–8377.

21 Castro, C., Cleenwerck, I., Trček, J., Zuluaga, R., De Vos, P., Caro, G., … & Ganan, P. (2013). Gluconacetobacter medellinensis sp. nov., cellulose‐and non‐cellulose‐producing acetic acid bacteria isolated from vinegar. International Journal of Systematic and Evolutionary Microbiology, 63(3), 1119–1125.

22 Castro, C., Zuluaga, R., Álvarez, C., Putaux, J. L., Caro, G., Rojas, O. J., … & Gañán, P. (2012). Bacterial cellulose produced by a new acid‐resistant strain of Gluconacetobacter genus. Carbohydrate Polymers, 89(4), 1033–1037.

23 Cerritelli, S. M., & Crouch, R. J. (2009). Ribonuclease H: the enzymes in eukaryotes. The FEBS Journal, 276(6), 1494–1505.

24 Chatterjee, R., Millard, C. S., Champion, K., Clark, D. P., & Donnelly, M. I. (2001). Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Applied and Environmental Microbiology, 67(1), 148–154.

25 Chen, D., Yuan, X., Liang, L., Liu, K., Ye, H., Liu, Z., … & Zhang, Y. (2019). Overexpression of acetyl‐CoA carboxylase increases fatty acid production in the green alga Chlamydomonas reinhardtii. Biotechnology Letters, 41(10), 1133–1145.

26 Chen, F., Tholl, D., Bohlmann, J., & Pichersky, E. (2011). The family of terpene synthases in plants: a mid‐size family of genes for specialized metabolism that is highly diversified throughout the kingdom. The Plant Journal, 66(1), 212–229.

27 Chen, G. Q. (2009). A microbial polyhydroxyalkanoates (PHA) based bio‐and materials industry. Chemical Society Reviews, 38(8), 2434–2446.

28 Chen, H., He, X., Geng, H., & Liu, H. (2014). Physiological characterization of ATP‐citrate lyase in Aspergillus niger. Journal of Industrial Microbiology & Biotechnology, 41(4), 721–731.

29 Chen, W. J. (2002). Functions of hyaluronan in wound repair. Proceedings of an International Meeting, September 2000, North East Wales Institute, UK. doi:https://doi.org/10.1533/9781845693121.147.

30 Chen, X., Yang, W., Zhang, L., Wu, X., Cheng, T., & Li, G. (2017). Genome‐wide identification, functional and evolutionary analysis of terpene synthases in pineapple. Computational Biology and Chemistry, 70, 40–48.

31 Chen, Y. H., Li, J., Liu, L., Liu, H. Z., & Wang, Q. (2012). Optimization of flask culture medium and conditions for hyaluronic acid production by a Streptococcus equisimilis mutant nc2168. Brazilian Journal of Microbiology, 43(4), 1553–1561.

32  Chen, Y., & Nielsen, J. (2016). Biobased organic acids production by metabolically engineered microorganisms. Current Opinion in Biotechnology, 37, 165–172.

33 Chien, A., Edgar, D. B., & Trela, J. M. (1976). Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. Journal of Bacteriology, 127(3), 1550–1557.

34 Chien, L. J., & Lee, C. K. (2007). Hyaluronic acid production by recombinant Lactococcus lactis. Applied Microbiology and Biotechnology, 77(2), 339–346.

35 Chinthapalli, R., Iffland, K., Aeschelmann, F., Raschka, A., & Carus, M. (2018). Succinic Acid: New Bio‐Based Building Block with a Huge Market and Environmental Potential? Nova‐Institut GmbH.

36 Choi, Y. N., & Park, J. M. (2016). Enhancing biomass and ethanol production by increasing NADPH production in Synechocystis sp. PCC 6803. Bioresource Technology, 213, 54–57.

37 Chong, B. F., Blank, L. M., Mclaughlin, R., & Nielsen, L. K. (2005). Microbial hyaluronic acid production. Applied Microbiology and Biotechnology, 66(4), 341–351.

38 Cui, Z., Gao, C., Li, J., Hou, J., Lin, C. S. K., & Qi, Q. (2017). Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid production from glycerol at low pH. Metabolic Engineering, 42, 126–133.

39 Dexter, J., & Fu, P. (2009). Metabolic engineering of cyanobacteria for ethanol production. Energy & Environmental Science, 2(8), 857–864.

40 Dexter, J., Armshaw, P., Sheahan, C., & Pembroke, J. T. (2015). The state of autotrophic ethanol production in Cyanobacteria. Journal of Applied Microbiology, 119(1), 11–24.

41 Dragone, G., Fernandes, B. D., Vicente, A. A., & Teixeira, J. A. (2010). Third generation biofuels from microalgae. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, A. Méndez‐Vilas (Ed.). Formatex Research Center, Badajoz, Spain.

42 Du, J., Shao, Z., & Zhao, H. (2011). Engineering microbial factories for synthesis of value‐added products. Journal of Industrial Microbiology & Biotechnology, 38(8), 873–890.

43 Dutta, K., Daverey, A., & Lin, J. G. (2014). Evolution retrospective for alternative fuels: first to fourth generation. Renewable Energy, 69, 114–122.

44 Facchini, P. J., Bohlmann, J., Covello, P. S., De Luca, V., Mahadevan, R., Page, J. E., … & Martin, V. J. (2012). Synthetic biosystems for the production of high‐value plant metabolites. Trends in Biotechnology, 30(3), 127–131.

45 Feng, J., Gu, Y., Quan, Y., Cao, M., Gao, W., Zhang, W., … & Song, C. (2015). Improved poly‐γ‐glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering. Metabolic Engineering, 32, 106–115.

46 Fukui, T., Mukoyama, M., Orita, I., & Nakamura, S. (2014). Enhancement of glycerol utilization ability of Ralstonia eutropha H16 for production of polyhydroxyalkanoates. Applied Microbiology and Biotechnology, 98(17), 7559–7568.

47 Gao, C., Yang, X., Wang, H., Rivero, C. P., Li, C., Cui, Z., … & Lin, C. S. K. (2016a). Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica. Biotechnology for Biofuels, 9(1), 1–11.

48 Gao, X., Gao, F., Liu, D., Zhang, H., Nie, X., & Yang, C. (2016b). Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy & Environmental Science, 9(4), 1400–1411.

49 Gao, Z., Zhao, H., Li, Z., Tan, X., & Lu, X. (2012). Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy & Environmental Science, 5(12), 9857–9865.

50 Gaurav, N., Sivasankari, S., Kiran, G. S., Ninawe, A., & Selvin, J. (2017). Utilization of bioresources for sustainable biofuels: a review. Renewable and Sustainable Energy Reviews, 73, 205–214.

51 Ghirardi, M. L., Zhang, L., Lee, J. W., Flynn, T., Seibert, M., Greenbaum, E., & Melis, A. (2000). Microalgae: a green source of renewable H2. Trends in Biotechnology, 18(12), 506–511.

52 Goeddel, D. V., Kleid, D. G., Bolivar, F., Heyneker, H. L., Yansura, D. G., Crea, R., … & Riggs, A. D. (1979). Expression in Escherichia coli of chemically synthesized genes for human insulin. Proceedings of the National Academy of Sciences, 76(1), 106–110.

53 Grage, K., Jahns, A. C., Parlane, N., Palanisamy, R., Rasiah, I. A., Atwood, J. A., & Rehm, B. H. (2009). Bacterial polyhydroxyalkanoate granules: biogenesis, structure, and potential use as nano‐/micro‐beads in biotechnological and biomedical applications. Biomacromolecules, 10(4), 660–669.

54 Greider, C. W., & Blackburn, E. H. (1985). Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell, 43(2), 405–413.

55 Guerrier‐Takada, C., Gardiner, K., Marsh, T., Pace, N., & Altman, S. (1983). The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell, 35(3), 849–857.

56 Halfmann, C., Gu, L., Gibbons, W., & Zhou, R. (2014). Genetically engineering cyanobacteria to convert CO 2, water, and light into the long‐chain hydrocarbon farnesene. Applied Microbiology and Biotechnology, 98(23), 9869–9877.

57 Hershey, A. D., & Chase, M. (1952). Independent functions of viral protein and nucleic acid in growth of bacteriophage. Journal of General Physiology, 36(1), 39–56.

58 Hmar, R. V., Prasad, S. B., Jayaraman, G., & Ramachandran, K. B. (2014). Chromosomal integration of hyaluronic acid synthesis (has) genes enhances the molecular weight of hyaluronan produced in Lactococcus lactis. Biotechnology Journal, 9(12), 1554–1564.

59  Holzer, H. (1969). Regulation of enzymes by enzyme‐catalyzed chemical modification. Advances in Enzymology and Related Areas of Molecular Biology, 32, 297–326.

60 Hoshi, H., Nakagawa, H., Nishiguchi, S., Iwata, K., Niikura, K., Monde, K., & Nishimura, S. I. (2004). An engineered hyaluronan synthase characterization of recombinant human hyaluronan synthase 2 expressed in Escherichia coli. Journal of Biological Chemistry, 279(4), 2341–2349.

61 Hosseinpour, S., Aghbashlo, M., Tabatabaei, M., Younesi, H., Mehrpooya, M., & Ramakrishna, S. (2017). Multi‐objective exergy‐based optimization of a continuous photobioreactor applied to produce hydrogen using a novel combination of soft computing techniques. International Journal of Hydrogen Energy, 42(12), 8518–8529.

62 Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal, 54(4), 621–639.

63 Huisman, G. W., Wonink, E., de Koning, G., Preusting, H., & Witholt, B. (1992). Synthesis of poly (3‐hydroxyalkanoates) by mutant and recombinant Pseudomonas strains. Applied Microbiology and Biotechnology, 38(1), 1–5.

64 Huisman, G. W., Wonink, E., Meima, R., Kazemier, B., Terpstra, P., & Witholt, B. (1991). Metabolism of poly (3‐hydroxyalkanoates)(PHAs) by Pseudomonas oleovorans. Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. Journal of Biological Chemistry, 266(4), 2191–2198.

65 Hwang, J. H., Kim, H. C., Choi, J. A., Abou‐Shanab, R. A. I., Dempsey, B. A., Regan, J. M., … & Lee, W. (2014). Photoautotrophic hydrogen production by eukaryotic microalgae under aerobic conditions. Nature Communications, 5(1), 1–6.

66 Ito, Y., Hirasawa, T., & Shimizu, H. (2014). Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling. Bioscience, Biotechnology, and Biochemistry, 78(1), 151–159.

67 Jacobsen, H., Klenow, H., & Overoaard‐Hansen, K. (1974). The N‐terminal amino‐acid sequences of DNA polymerase I from Escherichia coli and of the large and the small fragments obtained by a limited proteolysis. European Journal of Biochemistry, 45(2), 623–627.

68 Jang, W. D., Kim, T. Y., Kim, H. U., Shim, W. Y., Ryu, J. Y., Park, J. H., & Lee, S. Y. (2019). Genomic and metabolic analysis of Komagataeibacter xylinus DSM 2325 producing bacterial cellulose nanofiber. Biotechnology and Bioengineering, 116(12), 3372–3381.

69 Jeong, E., Shim, W. Y., & Kim, J. H. (2014). Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight. Journal of Biotechnology, 185, 28–36.

70  Jia, Y., Zhu, J., Chen, X., Tang, D., Su, D., Yao, W., & Gao, X. (2013). Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights. Bioresource Technology, 132, 427–431.

71 Jin, P., Kang, Z., Yuan, P., Du, G., & Chen, J. (2016). Production of specific‐molecular‐weight hyaluronan by metabolically engineered Bacillus subtilis 168. Metabolic Engineering, 35, 21–30.

72 John, R. P., Gangadharan, D., & Nampoothiri, K. M. (2008). Genome shuffling of Lactobacillus delbrueckii mutant and Bacillus amyloliquefaciens through protoplasmic fusion for L‐lactic acid production from starchy wastes. Bioresource Technology, 99(17), 8008–8015.

73 Joshi, G., Pandey, J. K., Rana, S., & Rawat, D. S. (2017). Challenges and opportunities for the application of biofuel. Renewable and Sustainable Energy Reviews, 79, 850–866.

74 Ju, S. Y., Kim, J. H., & Lee, P. C. (2016). Long‐term adaptive evolution of Leuconostoc mesenteroides for enhancement of lactic acid tolerance and production. Biotechnology for Biofuels, 9(1), 240.

75 Kaur, M., & Jayaraman, G. (2016). Hyaluronan production and molecular weight is enhanced in pathway‐engineered strains of lactate dehydrogenase‐deficient Lactococcus lactis. Metabolic Engineering Communications, 3, 15–23.

76 Keasling, J. D. (2012). Synthetic biology and the development of tools for metabolic engineering. Metabolic Engineering, 14(3), 189–195.

77 Khan, I., Qayyum, S., Maqbool, F., Hayat, A., & Farooqui, M. S. (2017). Microbial organic acids production, biosynthetic mechanism and applications‐Mini review. Indian Journal of Geosciences, 46(11), 2165–2174.

78 Kim, J. H., Yoo, S. J., Oh, D. K., Kweon, Y. G., Park, D. W., Lee, C. H., & Gil, G. H. (1996a). Selection of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid. Enzyme and Microbial Technology, 19(6), 440–445.

79 Kim, U. J., Birren, B. W., Slepak, T., Mancino, V., Boysen, C., Kang, H. L., … & Shizuya, H. (1996b). Construction and characterization of a human bacterial artificial chromosome library. Genomics, 34(2), 213–218.

80 Kim, W. J., Ahn, J. H., Kim, H. U., Kim, T. Y., & Lee, S. Y. (2017). Metabolic engineering of Mannheimia succiniciproducens for succinic acid production based on elementary mode analysis with clustering. Biotechnology Journal, 12(2), 1600701.

81 Kiss, R. D., & Stephanopoulos, G. (1992). Metabolic characterization of al‐lysine‐producing strain by continuous culture. Biotechnology and Bioengineering, 39(5), 565–574.

82 Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44(22), 3358–3393.

83  Klenow, H., & Henningsen, I. (1970). Selective elimination of the exonuclease activity of the deoxyribonucleic acid polymerase from Escherichia coli B by limited proteolysis. Proceedings of the National Academy of Sciences, 65(1), 168–175.

84 Knothe, G. (2005). Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology, 86(10), 1059–1070.

85 Kosourov, S. N., Ghirardi, M. L., & Seibert, M. (2011). A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain. International Journal of Hydrogen Energy, 36(3), 2044–2048.

86 Koutinas, A. A., Malbranque, F., Wang, R., Campbell, G. M., & Webb, C. (2007). Development of an oat‐based biorefinery for the production of L (+)‐lactic acid by Rhizopus oryzae and various value‐added coproducts. Journal of Agricultural and Food Chemistry, 55(5), 1755–1761.

87 Kubo, Y., Takagi, H., & Nakamori, S. (2000). Effect of gene disruption of succinate dehydrogenase on succinate production in a sake yeast strain. Journal of Bioscience and Bioengineering, 90(6), 619–624.

88 Kufryk, G. (2013). Advances in utilizing cyanobacteria for hydrogen production. Advances in Microbiology, 2013.

89 Kumar, G., Sivagurunathan, P., Pugazhendhi, A., Thi, N. B. D., Zhen, G., Chandrasekhar, K., & Kadier, A. (2017). A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options. Energy Conversion and Management, 141, 390–402.

90 Kumar, Y., Khan, F., Rastogi, S., & Shasany, A. K. (2018). Genome‐wide detection of terpene synthase genes in holy basil (Ocimum sanctum L.). PloS One, 13(11), e0207097.

91 Laron Z. (2001). Insulin‐like growth factor 1 (IGF‐1): a growth hormone. Molecular Pathology, 54(5), 311–316.

92 Roumezi, B., Avilan, L., Risoul, V., Brugna, M., Rabouille, S., & Latifi, A. (2020). Overproduction of the Flv3B flavodiiron, enhances the photobiological hydrogen production by the nitrogen‐fixing cyanobacterium Nostoc PCC 7120. Microbial Cell Factories, 19(1), 1–10.

93 Lee, H. J., Lee, J., Lee, S. M., Um, Y., Kim, Y., Sim, S. J., … & Woo, H. M. (2017). Direct conversion of CO2 to α‐farnesene using metabolically engineered Synechococcus elongatus PCC 7942. Journal of Agricultural and Food Chemistry, 65(48), 10424–10428.

94 Lee, J. W., Yi, J., Kim, T. Y., Choi, S., Ahn, J. H., Song, H., … & Lee, S. Y. (2016). Homo‐succinic acid production by metabolically engineered Mannheimia succiniciproducens. Metabolic Engineering, 38, 409–417.

95 Lee, S. J., Lee, D. Y., Kim, T. Y., Kim, B. H., Lee, J., & Lee, S. Y. (2005). Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Applied and Environmental Microbiology, 71(12), 7880–7887.

96  Lehman, I. R., Bessman, M. J., Simms, E. S., & Kornberg, A. (1958). Enzymatic synthesis of deoxyribonucleic acid I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. Journal of Biological Chemistry, 233(1), 163–170.

97 Li, J. W. H., & Vederas, J. C. (2009). Drug discovery and natural products: end of an era or an endless frontier?. Science, 325(5937), 161–165.

98 Li, N., Zhang, B., Wang, Z., Tang, Y. J., Chen, T., & Zhao, X. (2014). Engineering Escherichia coli for fumaric acid production from glycerol. Bioresource Technology, 174, 81–87.

99 Li, Y., Han, D., Hu, G., Dauvillee, D., Sommerfeld, M., Ball, S., & Hu, Q. (2010). Chlamydomonas starchless mutant defective in ADP‐glucose pyrophosphorylase hyper‐accumulates triacylglycerol. Metabolic Engineering, 12(4), 387–391.

100 Lin, H., Bennett, G. N., & San, K. Y. (2005). Fed‐batch culture of a metabolically engineered Escherichia coli strain designed for high‐level succinate production and yield under aerobic conditions. Biotechnology and Bioengineering, 90(6), 775–779.

101 Linares, D. M., O’Callaghan, T. F., O’Connor, P. M., Ross, R. P., & Stanton, C. (2016). Streptococcus thermophilus APC151 strain is suitable for the manufacture of naturally GABA‐enriched bioactive yogurt. Frontiers in Microbiology, 7, 1876.

102 Lindberg, P., Park, S., & Melis, A. (2010). Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metabolic Engineering, 12(1), 70–79.

103 Liu, L. F. (1989). DNA topoisomerase poisons as antitumor drugs. Annual Review of Biochemistry, 58(1), 351–375.

104 Liu, M., Li, S., Xie, Y., Jia, S., Hou, Y., Zou, Y., & Zhong, C. (2018). Enhanced bacterial cellulose production by Gluconacetobacter xylinus via expression of Vitreoscilla hemoglobin and oxygen tension regulation. Applied Microbiology and Biotechnology, 102(3), 1155–1165.

105 Loo, C. Y., Lee, W. H., Tsuge, T., Doi, Y., & Sudesh, K. (2005). Biosynthesis and characterization of poly (3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) from palm oil products in a Wautersia eutropha mutant. Biotechnology Letters, 27(18), 1405–1410.

106 Loos, K. (Ed.). (2011). Biocatalysis in Polymer Chemistry. John Wiley & Sons.

107 Majidian, P., Tabatabaei, M., Zeinolabedini, M., Naghshbandi, M. P., & Chisti, Y. (2018). Metabolic engineering of microorganisms for biofuel production. Renewable and Sustainable Energy Reviews, 82, 3863–3885.

108 Masukawa, H., Mochimaru, M., & Sakurai, H. (2002). Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen‐fixing cyanobacterium Anabaena sp. PCC 7120. Applied Microbiology and Biotechnology, 58(5), 618–624.

109 Max, B., Salgado, J. M., Rodríguez, N., Cortés, S., Converti, A., & Domínguez, J. M. (2010). Biotechnological production of citric acid. Brazilian Journal of Microbiology, 41(4), 862–875.

110  Meijer, S., Nielsen, M. L., Olsson, L., & Nielsen, J. (2009). Gene deletion of cytosolic ATP: citrate lyase leads to altered organic acid production in Aspergillus niger. Journal of Industrial Microbiology & Biotechnology, 36(10), 1275–1280.

111 Meyer, J. (2007). [FeFe] hydrogenases and their evolution: a genomic perspective. Cellular and Molecular Life Sciences, 64(9), 1063.

112 Miller, R., Wu, G., Deshpande, R. R., Vieler, A., Gärtner, K., Li, X., … & Bullard, B. (2010). Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiology, 154(4), 1737–1752.

113 Morais, A. R., Dworakowska, S., Reis, A., Gouveia, L., Matos, C. T., Bogdał, D., & Bogel‐Łukasik, R. (2015). Chemical and biological‐based isoprene production: green metrics. Catalysis Today, 239, 38–43.

114 Najar, I. N., & Das, S. (2015). Poly‐glutamic acid (PGA)‐structure, synthesis, genomic organization and its application: a review. International Journal of Pharmaceutical Sciences and Research, 6(6), 2258.

115 Nishino, T., & Morikawa, K. (2002). Structure and function of nucleases in DNA repair: shape, grip and blade of the DNA scissors. Oncogene, 21(58), 9022–9032.

116 Okano, K., Kimura, S., Narita, J., Fukuda, H., & Kondo, A. (2007). Improvement in lactic acid production from starch using α‐amylase‐secreting Lactococcus lactis cells adapted to maltose or starch. Applied Microbiology and Biotechnology, 75(5), 1007–1013.

117 Okano, K., Zhang, Q., Shinkawa, S., Yoshida, S., Tanaka, T., Fukuda, H., & Kondo, A. (2009). Efficient production of optically pure D‐lactic acid from raw corn starch by using a genetically modified L‐lactate dehydrogenase gene‐deficient and α‐amylase‐secreting Lactobacillus plantarum strain. Applied and Environmental Microbiology, 75(2), 462–467.

118 Park, J. H., Lee, S. Y., Kim, T. Y., & Kim, H. U. (2008). Application of systems biology for bioprocess development. Trends in Biotechnology, 26(8), 404–412.

119 Pascal, J. M., O'Brien, P. J., Tomkinson, A. E., & Ellenberger, T. (2004). Human DNA ligase I completely encircles and partially unwinds nicked DNA. Nature, 432(7016), 473–478.

120 Pateraki, C., Patsalou, M., Vlysidis, A., Kopsahelis, N., Webb, C., Koutinas, A. A., & Koutinas, M. (2016). Actinobacillus succinogenes: advances on succinic acid production and prospects for development of integrated biorefineries. Biochemical Engineering Journal, 112, 285–303.

121 Patnaik, R., Louie, S., Gavrilovic, V., Perry, K., Stemmer, W. P., Ryan, C. M., & del Cardayré, S. (2002). Genome shuffling of Lactobacillus for improved acid tolerance. Nature Biotechnology, 20(7), 707–712.

122 Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102(1), 17–25.

123  Pohlmann, A., Fricke, W. F., Reinecke, F., Kusian, B., Liesegang, H., Cramm, R., … & Strittmatter, A. (2006). Genome sequence of the bioplastic‐producing “Knallgas” bacterium Ralstonia eutropha H16. Nature Biotechnology, 24(10), 1257–1262.

124 Pötter, M., & Steinbüchel, A. (2005). Poly (3‐hydroxybutyrate) granule‐associated proteins: impacts on poly (3‐hydroxybutyrate) synthesis and degradation. Biomacromolecules, 6(2), 552–560.

125 Povolo, S., Toffano, P., Basaglia, M., & Casella, S. (2010). Polyhydroxyalkanoates production by engineered Cupriavidus necator from waste material containing lactose. Bioresource Technology, 101(20), 7902–7907.

126 Prasad, S. B., Jayaraman, G., & Ramachandran, K. B. (2010). Hyaluronic acid production is enhanced by the additional co‐expression of UDP‐glucose pyrophosphorylase in Lactococcus lactis. Applied Microbiology and Biotechnology, 86(1), 273–283.

127 Prasad, S. B., Ramachandran, K. B., & Jayaraman, G. (2012). Transcription analysis of hyaluronan biosynthesis genes in Streptococcus zooepidemicus and metabolically engineered Lactococcus lactis. Applied Microbiology and Biotechnology, 94(6), 1593–1607.

128 Radakovits, R., Eduafo, P. M., & Posewitz, M. C. (2011). Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metabolic Engineering, 13(1), 89–95.

129 Rahman, M. M., & Netravali, A. N. (2016). Aligned bacterial cellulose arrays as “Green” nanofibers for composite materials. ACS Macro Letters, 5(9), 1070–1074.

130 Ramachandran, S., Fontanille, P., Pandey, A., & Larroche, C. (2006). Gluconic acid: properties, applications and microbial production. Food Technology & Biotechnology, 44(2).

131 Rastogi, R. P., Pandey, A., Larroche, C., & Madamwar, D. (2018). Algal Green Energy–R&D and technological perspectives for biodiesel production. Renewable and Sustainable Energy Reviews, 82, 2946–2969.

132 Reh, C. S., & Geffner, M. E. (2010). Somatotropin in the treatment of growth hormone deficiency and Turner syndrome in pediatric patients: a review. Clinical Pharmacology: Advances and Applications, 2, 111.

133 Rehm, B. H. (2010). Bacterial polymers: biosynthesis, modifications and applications. Nature Reviews Microbiology, 8(8), 578–592.

134 Riley, J., Butler, R., Ogilvie, D., Finniear, R., Jenner, D., Powell, S., … & Markham, A. F. (1990). A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Research, 18(10), 2887–2890.

135 Römling, U., & Galperin, M. Y. (2015). Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends in Microbiology, 23(9), 545–557.

136 Ruijter, G. J. G., Panneman, H., & Visser, J. (1997). Overexpression of phosphofructokinase and pyruvate kinase in citric acid‐producing Aspergillus niger. Biochimica et Biophysica Acta (BBA)‐General Subjects, 1334(2–3), 317–326.

137  Sajadi, E., Babaipour, V., Deldar, A. A., Yakhchali, B., & Fatemi, S. S. A. (2017). Enhancement of crystallinity of cellulose produced by Escherichia coli through heterologous expression of bcsD gene from Gluconacetobacter xylinus. Biotechnology Letters, 39(9), 1395–1401.

138 Sauer, M., Porro, D., Mattanovich, D., & Branduardi, P. (2008). Microbial production of organic acids: expanding the markets. Trends in Biotechnology, 26(2), 100–108.

139 Schubert, P., Steinbüchel, A., & Schlegel, H. G. (1988). Cloning of the Alcaligenes eutrophus genes for synthesis of poly‐beta‐hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. Journal of Bacteriology, 170(12), 5837–5847.

140 Shih, L., & Van, Y. T. (2001). The production of poly‐(γ‐glutamic acid) from microorganisms and its various applications. Bioresource Technology, 79(3), 207–225.

141 Singh, A., Lynch, M. D., & Gill, R. T. (2009). Genes restoring redox balance in fermentation‐deficient E. coli NZN111. Metabolic Engineering, 11(6), 347–354.

142 Singh, R., Kumar, M., Mittal, A., & Mehta, P. K. (2016). Microbial enzymes: industrial progress in 21st century. Biotech, 6(2), 174.

143 Singh, R., Mittal, A., Kumar, M., & Mehta, P. K. (2017). Organic acids: an overview on microbial production. International Journal of Advanced Biotechnology and Research, 8(1), 104–111.

144 Sirajunnisa, A. R., & Surendhiran, D. (2016). Algae–A quintessential and positive resource of bioethanol production: a comprehensive review. Renewable and Sustainable Energy Reviews, 66, 248–267.

145 Škraban, J., Cleenwerck, I., Vandamme, P., Fanedl, L., & Trček, J. (2018). Genome sequences and description of novel exopolysaccharides producing species Komagataeibacter pomaceti sp. nov. and reclassification of Komagataeibacter kombuchae (Dutta and Gachhui 2007)

146 Smith, H. O., & Welcox, K. W. (1970). A restriction enzyme from Hemophilus influenzae: I. Purification and general properties. Journal of Molecular iology, 51(2), 379–391.

147 Soccol, C. R., Vandenberghe, L. P., Rodrigues, C., & Pandey, A. (2006). New perspectives for citric acid production and application. Food Technology & Biotechnology, 44(2).

148 Song, C. W., Kim, D. I., Choi, S., Jang, J. W., & Lee, S. Y. (2013). Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnology and Bioengineering, 110(7), 2025–2034.

149 Song, H., & Lee, S. Y. (2006). Production of succinic acid by bacterial fermentation. Enzyme and Microbial Technology, 39(3), 352–361.

150 Stadtman, E. R. (1966). Allosteric regulation of enzyme activity. Advances in Enzymology and Related Areas of Molecular Biology, 28, 41–154.

151 Steiger, M. G., Mattanovich, D., & Sauer, M. (2017). Microbial organic acid production as carbon dioxide sink. FEMS Microbiology Letters, 364(21), fnx212.

152  Steiger, M. G., Rassinger, A., Mattanovich, D., & Sauer, M. (2019). Engineering of the citrate exporter protein enables high citric acid production in Aspergillus niger. Metabolic Engineering, 52, 224–231.

153 Subramani, V., & Gangwal, S. K. (2008). A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energy & Fuels, 22(2), 814–839.

154 Sudesh, K., Abe, H., & Doi, Y. (2000). Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress in Polymer Science, 25(10), 1503–1555.

155 Sugimoto, S., Higashi, C., Matsumoto, S., & Sonomoto, K. (2010). Improvement of multiple‐stress tolerance and lactic acid production in Lactococcus lactis NZ9000 under conditions of thermal stress by heterologous expression of Escherichia coli dnaK. Applied and Environmental Microbiology, 76(13), 4277–4285.

156 Sun, X., Shen, X., Jain, R., Lin, Y., Wang, J., Sun, J., … & Yuan, Q. (2015). Synthesis of chemicals by metabolic engineering of microbes. Chemical Society Reviews, 44(11), 3760–3785.

157 Surriya, O., Saleem, S. S., Waqar, K., Kazi, A. G., & Öztürk, M. (2015). Bio‐fuels: a blessing in disguise. In Phytoremediation for Green Energy (pp. 11–54). Springer, Dordrecht.

158 Takeda, A., Cooper, K., Bird, A., Baxter, L., Gospodarevskaya, E., Frampton, G. K., … & Bryant, J. (2010). Recombinant human growth hormone for the treatment of growth disorders in children: a systematic review and economic evaluation. Health Technology Assessment, 14(42).

159 Tamás, L., Huttová, J., Mistrk, I., & Kogan, G. (2002). Effect of carboxymethyl chitin‐glucan on the activity of some hydrolytic enzymes in maize plants. Chemical Papers, 56(5), 326–329.

160 Tanimoto, H. (2010). Food applications of poly‐gamma‐glutamic acid. In Amino‐acid homopolymers occurring in nature (pp. 155–168). Springer, Berlin, Heidelberg.

161 Tippmann, S., Scalcinati, G., Siewers, V., & Nielsen, J. (2016). Production of farnesene and santalene by Saccharomyces cerevisiae using fed‐batch cultivations with RQ‐controlled feed. Biotechnology and Bioengineering, 113(1), 72–81.

162 Tombolini, R., Povolo, S., Buson, A., Squartini, A., & Nuti, M. P. (1995). Poly‐β‐hydroxybutyrate (PHB) biosynthetic genes in Rhizobium meliloti 41. Microbiology, 141(10), 2553–2559.

163 Trentacoste, E. M., Shrestha, R. P., Smith, S. R., Glé, C., Hartmann, A. C., Hildebrand, M., & Gerwick, W. H. (2013). Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proceedings of the National Academy of Sciences, 110(49), 19748–19753.

164 Tyo, K. E., Alper, H. S., & Stephanopoulos, G. N. (2007). Expanding the metabolic engineering toolbox: more options to engineer cells. Trends in Biotechnology, 25(3), 132–137.

165  Ulery, B. D., Nair, L. S., & Laurencin, C. T. (2011). Biomedical applications of biodegradable polymers. Journal of Polymer Science Part B: Polymer Physics, 49(12), 832–864.

166 Vajo, Z., Fawcett, J., & Duckworth, W. C. (2001). Recombinant DNA technology in the treatment of diabetes: insulin analogs. Endocrine Reviews, 22(5), 706–717.

167 Van Vlierberghe, S., Cnudde, V., Dubruel, P., Masschaele, B., Cosijns, A., De Paepe, I., … & Schacht, E. (2007). Porous gelatin hydrogels: 1. Cryogenic formation and structure analysis. Biomacromolecules, 8(2), 331–337.

168 Vandenberghe, L. P., Soccol, C. R., Pandey, A., & Lebeault, J. M. (1999). Microbial production of citric acid. Brazilian Archives of Biology and Technology, 42(3), 263–276.

169 Voloshin, R. A., Rodionova, M. V., Zharmukhamedov, S. K., Veziroglu, T. N., & Allakhverdiev, S. I. (2019). Biofuel production from plant and algal biomass. Международный научный журнал Альтернативная энергетика и экология, ( 7–9), 12–31.

170 Walker R. F. (2006). Sermorelin: a better approach to management of adult‐onset growth hormone insufficiency?. Clinical Interventions in Aging, 1(4), 307–308.

171 Wang, C., Yoon, S. H., Jang, H. J., Chung, Y. R., Kim, J. Y., Choi, E. S., & Kim, S. W. (2011). Metabolic engineering of Escherichia coli for α‐farnesene production. Metabolic engineering, 13(6), 648–655.

172 Wang, L., Cao, Z., Hou, L., Yin, L., Wang, D., Gao, Q., … & Wang, D. (2016). The opposite roles of agdA and glaA on citric acid production in Aspergillus niger. Applied Microbiology and Biotechnology, 100(13), 5791–5803.

173 Wang, M., Luan, G., & Lu, X. (2020). Engineering ethanol production in a marine cyanobacterium Synechococcus sp. PCC7002 through simultaneously removing glycogen synthesis genes and introducing ethanolgenic cassettes. Journal of Biotechnology.

174 Wang, W., Li, Z., Xie, J., & Ye, Q. (2009). Production of succinate by a pflB ldhA double mutant of Escherichia coli overexpressing malate dehydrogenase. Bioprocess and Biosystems Engineering, 32(6), 737.

175 Wu, C., Zhang, J., Chen, W., Wang, M., Du, G., & Chen, J. (2012). A combined physiological and proteomic approach to reveal lactic‐acid‐induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance. Applied Microbiology and Biotechnology, 93(2), 707–722.

176 Wu, C., Zhang, J., Du, G., & Chen, J. (2013). Heterologous expression of Lactobacillus casei RecO improved the multiple‐stress tolerance and lactic acid production in Lactococcus lactis NZ9000 during salt stress. Bioresource Technology, 143, 238–241.

177 Wu, H., Chen, J., & Chen, G. Q. (2016b). Engineering the growth pattern and cell morphology for enhanced PHB production by Escherichia coli. Applied Microbiology and Biotechnology, 100(23), 9907–9916.

178  Wu, H., Fan, Z., Jiang, X., Chen, J., & Chen, G. Q. (2016a). Enhanced production of polyhydroxybutyrate by multiple dividing E. coli. Microbial Cell Factories, 15(1), 1–13.

179 Xiong, W., Wu, P., Jia, Y., Wei, X., Xu, L., Yang, Y., … & Wu, G. (2016). Genome‐wide analysis of the terpene synthase gene family in physic nut (Jatropha curcas L.) and functional identification of six terpene synthases. Tree Genetics & Genomes, 12(5), 97.

180 Xu, G., Liu, L., & Chen, J. (2012). Reconstruction of cytosolic fumaric acid biosynthetic pathways in Saccharomyces cerevisiae. Microbial Cell Factories, 11(1), 24.

181 Yang, X., Nambou, K., Wei, L., & Hua, Q. (2016). Heterologous production of α‐farnesene in metabolically engineered strains of Yarrowia lipolytica. Bioresource Technology, 216, 1040–1048.

182 Yoshino, F., Ikeda, H., Masukawa, H., & Sakurai, H. (2007). High photobiological hydrogen production activity of a Nostoc sp. PCC 7422 uptake hydrogenase‐deficient mutant with high nitrogenase activity. Marine Biotechnology, 9(1), 101–112.

183 Breed, R. S., Murray E. G. D., & Smith N. R. (1957). Bergey's Manual of Determinative Bacteriology, 7. The Williams and Wilkins Company.

184 Yu, Q., Cui, Z., Zheng, Y., Huo, H., Meng, L., Xu, J., & Gao, C. (2018). Exploring succinic acid production by engineered Yarrowia lipolytica strains using glucose at low pH. Biochemical Engineering Journal, 139, 51–56.

185 Yu, S., Huang, D., Wen, J., Li, S., Chen, Y., & Jia, X. (2012). Metabolic profiling of a Rhizopus oryzae fumaric acid production mutant generated by femtosecond laser irradiation. Bioresource Technology, 114, 610–615.

186 Zhang, B., & Yang, S. T. (2012). Metabolic engineering of Rhizopus oryzae: effects of overexpressing fumR gene on cell growth and fumaric acid biosynthesis from glucose. Process Biochemistry, 47(12), 2159–2165.

187 Zhang, B., Skory, C. D., & Yang, S. T. (2012). Metabolic engineering of Rhizopus oryzae: effects of overexpressing pyc and pepc genes on fumaric acid biosynthesis from glucose. Metabolic Engineering, 14(5), 512–520.

188 Zhao, C., Li, Z., Li, T., Zhang, Y., Bryant, D. A., & Zhao, J. (2015). High‐yield production of extracellular type‐I cellulose by the cyanobacterium Synechococcus sp. PCC 7002. Cell Discovery, 1(1), 1–12.

189 Zhao, W., Li, J., Jin, K., Liu, W., Qiu, X., & Li, C. (2016). Fabrication of functional PLGA‐based electrospun scaffolds and their applications in biomedical engineering. Materials Science and Engineering: C, 59, 1181–1194.

190 Zinn, M., & Hany, R. (2005). Tailored material properties of polyhydroxyalkanoates through biosynthesis and chemical modification. Advanced Engineering Materials, 7(5), 408–411.

Biomolecular Engineering Solutions for Renewable Specialty Chemicals

Подняться наверх