Читать книгу Bioprospecting of Microorganism-Based Industrial Molecules - Группа авторов - Страница 27
References
Оглавление1 1 Sar, P., Ghosh, A., Scarso, A., and Saha, B. (2019). Surfactant for better tomorrow: applied aspect of surfactant aggregates from laboratory to industry. Research on Chemical Intermediates 45: 6021–6041.
2 2 Santos, D.K.F., Rufino, R.D., Luna, J.M. et al. (2016). Biosurfactants: multifunctional biomolecules of the 21st century. International Journal of Molecular Sciences 17: 401.
3 3 Ontiveros, J.F., Pierlot, C.M., Catté, M. et al. (2014). A simple method to assess the hydrophilic and lipophilic balance of food and cosmetic surfactants using the phase inversion temperature of C10E4/n‐octane/water emulsions. Colloids and Surfaces, A: Physicochemical and Engineering Aspects 458: 32–39.
4 4 Henkel, M. and Hausmann, R. (2019). Diversity and classification of microbial surfactants. In: Biobased Surfactants, 2e (eds. D. Hayes, D. Solaiman and R. Ashby), 41–63. Elsevier.
5 5 Vijayakumar, S. and Saravanan, V. (2015). Biosurfactants‐types, sources, and applications. Research Journal of Microbiology 10: 181–192.
6 6 Dhanarajan, G. and Sen, R. (2014). Cost analysis of biosurfactant production from a scientist’s perspective. In: Biosurfactants: Production and Utilization‐Processes, Technologies, and Economics, Surfactant Science, vol. 159 (eds. N. Kosaric and F. Vardar‐Sujan), 153–160. CRC Press.
7 7 Konishi, M., Yoshida, Y., and Horiuchi, J.‐i. (2015). Efficient production of sophorolipids by Starmerella bombicola using a corncob hydrolysate medium. Journal of Bioscience and Bioengineering 119: 317–322.
8 8 Funston, S.J., Tsaousi, K., Rudden, M. et al. (2016). Characterising rhamnolipids production in Burkholderia thailandesis E264, a non‐pathogenic producer. Applied Microbiology and Biotechnology 100: 7945–7956.
9 9 Delbeke, E.I.P., Movsisyan, M., Van Geem, K.M., and Stevens, C.V. (2016). Chemical and enzymatic modification of sophorolipids. Green Chemistry 18: 76–104.
10 10 Sharma, M., Patel, S.N., Lata, K. et al. (2016). A novel approach of integrated bioprocessing of cane molasses for the production of prebiotic and functional bioproducts. Bioresource Technology 219: 311–318.
11 11 Lata, K., Sharma, M., Patel, S.N. et al. (2018). An integrated bio‐process for production of functional biomolecules utilizing raw and by‐products from dairy and sugarcane industries. Bioprocess and Biosystems Engineering 41: 1121–1131.
12 12 Perfumo, A., Banat, I.M., and Marchant, R. (2018). Going green and cold: biosurfactants from low‐temperature environments to biotechnology applications. Trends in Biotechnology 36: 277–289.
13 13 Fracchia, L., Ceresa, C., Franzetti, A. et al. (2015). Industrial application of biosurfactants. Surfactant Science Series 159: 245–267.
14 14 Patowary, K., Patowary, R., Deka, S., and Kalita, M.C. (2017). Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon. Frotiers in Microbiology 8: 279.
15 15 Chaprão, M.J., Ferreira, I.N.S., Correa, P.F. et al. (2015). Application of bacterial and yeast biosurfactants for enhanced removal and biodegradation of motor oil from contaminated sand. Electronic Journal of Biotechnology 18: 471–479.
16 16 Nitschke, M. and Sousa Silva, S. (2018). Recent food applications of microbial surfactants. Critical Reviews in Food Science and Nutrition 58: 631–638.
17 17 Diaz de Rienzo, M.A., Banat, I.M., Dolamn, B. et al. (2015). Sophorolipid biosurfactants: possible uses as antibacterial and antibiofilm agent. New Biotechology 32: 720–726.
18 18 Jezierska, S., Claus, S., and Van Bogaert, I. (2018). Yeast glycolipid biosurfactants. FEBS Letters 592 (8): 1312–1329.
19 19 Mimee, B., Labbé, C., and Bélanger, R.R. (2009). Catabolism of flocculosin, an antimicrobial metabolite produced by Pseudozyma flocculosa. Glycobiology 19 (9): 995–1001.
20 20 Charlesworth, J.C. and Burns, B.P. (2015). Untapped resources: biotechnological potential of peptides and secondary metabolites in archaea. Archaea 282035: 7.
21 21 Abdel‐Mawgoud, A.M. and Stephanopoulos, G. (2018). Simple glycolipids of microbes: chemistry, biological activity and metabolic engineering. Synthetic and Systems Biotechnology 3 (1): 3–19.
22 22 Sharma, D., Saharan, B.S., and Kapil, S. (2016). Biosurfactants of Lactic Acid Bacteria, 86. Switzerland: Springer.
23 23 Satpute, S.K., Kulkarni, G.R., Banpurkar, A.G. et al. (2016). Biosurfactant/s from Lactobacilli species: Properties, challenges and potential biomedical applications. Journal of Basic Microbiology 56 (11): 1140–1158.
24 24 Mata‐Sandoval, J.C., Karns, J., and Torrents, A. (2001). Effect of nutritional and environmental conditions on the production and composition of rhamnolipids by P. aeruginosa UG2. Microbiological Research 155 (4): 249–256.
25 25 Kaskatepe, B. and Yildiz, S. (2016). Rhamnolipid biosurfactants produced by Pseudomonas species. Brazilian Archives of Biology and Technology 59.
26 26 Chong, H. and Li, Q. (2017). Microbial production of rhamnolipids: opportunities, challenges and strategies. Microbial Cell Factories 16 (1): 137.
27 27 Fazli, R.R. and Hertadi, R. (2019). Production and characterization of rhamnolipids from bioconversion of palm oil mill effluent by the halophilic bacterium Pseudomonas stutzeri BK‐AB12. Environmental Progress & Sustainable Energy 38 (3): e13007.
28 28 Tan, Y.N. and Li, Q. (2018). Microbial production of rhamnolipids using sugars as carbon sources. Microbial Cell Factories 17 (1): 89.
29 29 Jadhav, M., Kalme, S., Tamboli, D., and Govindwar, S. (2011). Rhamnolipid from Pseudomonas desmolyticum NCIM‐2112 and its role in the degradation of Brown 3REL. Journal of Basic Microbiology 51 (4): 385–396.
30 30 Calvo, C., Toledo, F., and González‐López, J. (2004). Surfactant activity of a naphthalene degrading Bacillus pumilus strain isolated from oil sludge. Journal of Biotechnology 109 (3): 255–262.
31 31 Vasileva‐Tonkova, E. and Gesheva, V. (2005). Glycolipids produced by Antarctic Nocardioides sp. during growth on n‐paraffin. Process Biochemistry 40 (7): 2387–2391.
32 32 Nalini, S. and Parthasarathi, R. (2018). Optimization of rhamnolipid biosurfactant production from Serratia rubidaea SNAU02 under solid‐state fermentation and its biocontrol efficacy against Fusarium wilt of eggplant. Annals of Agrarian Science 16 (2): 108–115.
33 33 Dong, H., Xia, W., Dong, H. et al. (2016). Rhamnolipids produced by indigenous Acinetobacter junii from petroleum reservoir and its potential in enhanced oil recovery. Frontiers in Microbiology 7: 1710.
34 34 Hošková, M., Schreiberová, O., Ježdík, R. et al. (2013). Characterization of rhamnolipids produced by non‐pathogenic Acinetobacter and Enterobacter bacteria. Bioresource Technology 130: 510–516.
35 35 Joy, S., Rahman, P.K., Khare, S.K., and Sharma, S. (2019). Production and characterization of glycolipid biosurfactant from Achromobacter sp.(PS1) isolate using one‐factor‐at‐a‐time (OFAT) approach with feasible utilization of ammonia‐soaked lignocellulosic pretreated residues. Bioprocess and Biosystems Engineering 42 (8): 1301–1315.
36 36 Christova, N., Tuleva, B., Lalchev, Z. et al. (2004). Rhamnolipid biosurfactants produced by Renibacterium salmoninarum 27BN during growth on n‐hexadecane. Zeitschrift für Naturforschung. Section C 59 (1‐2): 70–74.
37 37 Yan, X., Sims, J., Wang, B., and Hamann, M.T. (2014). Marine actinomycete Streptomyces sp. ISP2‐49E, a new source of rhamnolipid. Biochemical Systematics and Ecology 55: 292–295.
38 38 Kalyani, A.L.T., Naga Sireesha, G., Aditya, A. et al. (2014). Production optimization of rhamnolipid biosurfactant by Streptomyces coelicoflavus (NBRC 15399T) using Plackett‐Burman design. European Journal of Biotechnology and Bioscience 1 (5): 07–13.
39 39 Lee, S.‐C., Lee, S.‐J., Kim, S.‐H. et al. (2008). Characterization of new biosurfactant produced by Klebsiella sp. Y6‐1 isolated from waste soybean oil. Bioresource Technology 99 (7): 2288–2292.
40 40 Luong, T.M., Ponamoreva, O.N., Nechaeva, I.A. et al. (2018). Characterization of biosurfactants produced by the oil‐degrading bacterium Rhodococcus erythropolis S67 at low temperature. World Journal of Microbiology and Biotechnology 34 (2): 20.
41 41 White, D.A., Hird, L.C., and Ali, S.T. (2013). Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. Journal of Applied Microbiology 115 (3): 744–755.
42 42 Shao, Z. (2011). Trehalolipids. In: Biosurfactants (ed. G. Soberón‐Chávez), 121–143. Berlin, Heidelberg: Springer.
43 43 Kuyukina, M.S., Ivshina, I.B., Philp, J.C. et al. (2001). Recovery of Rhodococcus biosurfactants using methyl tertiary‐butyl ether extraction. Journal of Microbiological Methods 46 (2): 149–156.
44 44 Tuleva, B., Christova, N., Cohen, R. et al. (2009). Isolation and characterization of trehalose tetraester biosurfactants from a soil strain Micrococcus luteus BN56. Process Biochemistry 44 (2): 135–141.
45 45 Kügler, J.H., Muhle‐Goll, C., Kühl, B. et al. (2014). Trehalose lipid biosurfactants produced by the actinomycetes Tsukamurella spumae and T. pseudospumae. Applied Microbiology and Biotechnology 98 (21): 8905–8915.
46 46 Wang, Y., Nie, M., Diwu, Z. et al. (2019). Characterization of trehalose lipids produced by a unique environmental isolate bacterium Rhodococcus qingshengii strain FF. Journal of Applied Microbiology 127 (5): 1442–1453.
47 47 Mnif, I. and Ghribi, D. (2016). Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. Journal of the Science of Food and Agriculture 96 (13): 4310–4320.
48 48 Dhasayan, A., Kiran, G.S., and Selvin, J. (2014). Production and characterisation of glycolipid biosurfactant by Halomonas sp. MB‐30 for potential application in enhanced oil recovery. Applied Biochemistry and Biotechnology 174 (7): 2571–2584.
49 49 Singh, P. and Tiwary, B.N. (2016). Isolation and characterization of glycolipid biosurfactant produced by a Pseudomonas otitidis strain isolated from Chirimiri coal mines, India. Bioresources and Bioprocessing 3 (1): 42.
50 50 Deleu, M. and Paquot, M. (2004). From renewable vegetables resources to microorganisms: new trends in surfactants. Comptes Rendus Chimie 7 (6‐7): 641–646.
51 51 Joshi, S.J., Geetha, S.J., and Desai, A.J. (2015). Characterization and application of biosurfactant produced by Bacillus licheniformis R2. Applied Biochemistry and Biotechnology 177 (2): 346–361.
52 52 Bezza, F.A. and Chirwa, E.M.N. (2015). Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2. Biochemical Engineering Journal 101: 168–178.
53 53 Deepak, R. and Jayapradha, R. (2015). Lipopeptide biosurfactant from Bacillus thuringiensis pak2310: a potential antagonist against Fusarium oxysporum. Journal de Mycologie Medicale 25 (1): e15–e24.
54 54 Kamal, I., Blaghen, M., Lahlou, F.Z., and Hammoumi, A. (2015). Evaluation of biosurfactant production by Aeromonas salmonicida sp. degrading gasoline. International Journal of Applied Microbiology and Biotechnology Research 3: 89–95.
55 55 Sajna, K.V., Höfer, R., Sukumaran, R.K. et al. (2015). White Biotechnology in Biosurfactants. In: Industrial Biorefineries and White Biotechnology (eds. A. Pandey, R. Höfer, M. Taherzadeh, et al.), 499–521. Amsterdam, Oxford, Waltham: Elsevier.
56 56 Yi, G., Liu, Q., Lin, J. et al. (2017). Repeated batch fermentation for surfactin production with immobilized Bacillus subtilis BS‐37: Two‐stage pH control and foam fractionation. Journal of Chemical Technology & Biotechnology 92 (3): 530–535.
57 57 Tang, Q., Bie, X., Lu, Z. et al. (2014). Effects of fengycin from Bacillus subtilis fmbJ on apoptosis and necrosis in Rhizopus stolonifer. Journal of Microbiology 52 (8): 675–680.
58 58 Balan, S.S., Kumar, C.G., and Jayalakshmi, S. (2016). Pontifactin, a new lipopeptide biosurfactant produced by a marine Pontibacter korlensis strain SBK‐47: purification, characterization and its biological evaluation. Process Biochemistry 51 (12): 2198–2207.
59 59 Clements, T., Ndlovu, T., Khan, S., and Khan, W. (2019). Biosurfactants produced by Serratia species: Classification, biosynthesis, production and application. Applied Microbiology and Biotechnology 103 (2): 589–602.
60 60 Rodrigues, L., Moldes, A., Teixeira, J., and Oliveira, R. (2006). Kinetic study of fermentative biosurfactant production by Lactobacillus strains. Biochemical Engineering Journal 28 (2): 109–116.
61 61 Satpute, S.K., Mone, N.S., Das, P. et al. (2019). Inhibition of pathogenic bacterial biofilms on PDMS based implants by L. acidophilus derived biosurfactant. BMC Microbiology 19 (1): 1–15.
62 62 Vecino, X., Barbosa‐Pereira, L., Devesa‐Rey, R. et al. (2015). Optimization of extraction conditions and fatty acid characterization of Lactobacillus pentosus cell‐bound biosurfactant/bioemulsifier. Journal of the Science of Food and Agriculture 95 (2): 313–320.
63 63 Morita, T., Konishi, M., Fukuoka, T. et al. (2007). Microbial conversion of glycerol into glycolipid biosurfactants, mannosylerythritol lipids, by a basidiomycete yeast, Pseudozyma antarctica JCM 10317T. Journal of Bioscience and Bioengineering 104 (1): 78–81.
64 64 Morita, T., Fukuoka, T., Imura, T., and Kitamoto, D. (2009). Production of glycolipid biosurfactants by basidiomycetous yeasts. Biotechnology and Applied Biochemistry 53 (1): 39–49.
65 65 Morita, T., Fukuoka, T., Kosaka, A. et al. (2015). Selective formation of mannosyl‐l‐arabitol lipid by Pseudozyma tsukubaensis JCM16987. Applied Microbiology and Biotechnology 99 (14): 5833–5841.
66 66 Saika, A., Koike, H., Fukuoka, T., and Morita, T. (2018). Tailor‐made mannosylerythritol lipids: current state and perspectives. Applied Microbiology and Biotechnology 102 (16): 6877–6884.
67 67 Fukuoka, T., Kawamura, M., Morita, T. et al. (2008). A basidiomycetous yeast, Pseudozyma crassa, produces novel diastereomers of conventional mannosylerythritol lipids as glycolipid biosurfactants. Carbohydrate Research 343 (17): 2947–2955.
68 68 Balan, S.S., Kumar, C.G., and Jayalakshmi, S. (2019). Physicochemical, structural and biological evaluation of Cybersan (trigalactomargarate), a new glycolipid biosurfactant produced by a marine yeast, Cyberlindnera saturnus strain SBPN‐27. Process Biochemistry 80: 171–180.
69 69 Konishi, M., Fujita, M., Ishibane, Y. et al. (2016). Isolation of yeast candidates for efficient sophorolipids production: their production potentials associate to their lineage. Bioscience, Biotechnology, and Biochemistry 80 (10): 2058–2064.
70 70 Konishi, M., Fukuoka, T., Morita, T. et al. (2008). Production of new types of sophorolipids by Candida batistae. Journal of Oleo Science 57 (6): 359–369.
71 71 Kurtzman, C.P., Price, N.P., Ray, K.J., and Kuo, T.M. (2010). Production of sophorolipid biosurfactants by multiple species of the Starmerella (Candida) bombicola yeast clade. FEMS Microbiology Letters 311 (2): 140–146.
72 72 Kurtzman, C.P. (2012). Candida kuoi sp. nov., an anamorphic species of the Starmerella yeast clade that synthesizes sophorolipids. International Journal of Systematic and Evolutionary Microbiology 62 (9): 2307–2311.
73 73 Sharma, P., Sangwan, S., and Kaur, H. (2019). Process parameters for biosurfactant production using yeast Meyerozyma guilliermondii YK32. Environmental Monitoring and Assessment 191 (9): 531.
74 74 Samad, A., Zhang, J., Chen, D., and Liang, Y. (2015). Sophorolipid production from biomass hydrolysates. Applied Biochemistry and Biotechnology 175 (4): 2246–2257.
75 75 Shah, M.U.H., Sivapragasam, M., Moniruzzaman, M. et al. (2017). Production of sophorolipids by Starmerella bombicola yeast using new hydrophobic substrates. Biochemical Engineering Journal 127: 60–67.
76 76 Wang, H., Roelants, S.L., To, M.H. et al. (2019). Starmerella bombicola: recent advances on sophorolipid production and prospects of waste stream utilization. Journal of Chemical Technology & Biotechnology 94 (4): 999–1007.
77 77 Chen, J., Song, X., Zhang, H., and Qu, Y. (2006). Production, structure elucidation and anticancer properties of sophorolipid from Wickerhamiella domercqiae. Enzyme and Microbial Technology 39 (3): 501–506.
78 78 Mousavi, F., Beheshti‐Maal, K., and Massah, A. (2015). Production of sophorolipid from an identified current yeast, Lachancea thermotolerans BBMCZ7FA20, isolated from honey bee. Current Microbiology 71 (2): 303–310.
79 79 Souza, K.S.T., Gudiña, E.J., Azevedo, Z. et al. (2017). New glycolipid biosurfactants produced by the yeast strain Wickerhamomyces anomalus CCMA 0358. Colloids and Surfaces B: Biointerfaces 154: 373–382.
80 80 Morita, T., Ishibashi, Y., Fukuoka, T. et al. (2011). Production of glycolipid biosurfactants, cellobiose lipids, by Cryptococcus humicola JCM 1461 and their interfacial properties. Bioscience, Biotechnology, and Biochemistry 75 (8): 1597–1599.
81 81 Paraszkiewicz, K., Kanwal, A., and Długoński, J. (2002). Emulsifier production by steroid transforming filamentous fungus Curvularia lunata. Growth and product characterization. Journal of Biotechnology 92 (3): 287–294.
82 82 Bhardwaj, G., Cameotra, S.S., and Chopra, H.K. (2013). Biosurfactants from fungi: a review. Journal of Petroleum & Environmental Biotechnology 4 (6): 1–6.
83 83 Ahuja, K. and Singh, S. (2019). Biosurfactant market Size. Delaware, USA. Global Market Insights. https://www.gminsights.com/pressrelease/biosurfactants‐market‐size (Revised 5 August 2020).
84 84 Nishanthi, R., Kumaran, S., Palani, P. et al. (2010). Screening of biosurfactants from hydrocarbon degrading bacteria. Journal of Ecobiotechnology 2 (5): 47–53.
85 85 Saravanan, V. and Vijayakumar, S. (2012). Isolation and screening of biosurfactant producing microorganisms from oil contaminated soil. Journal of Academia and Industrial Research 1 (5): 264–268.
86 86 Cai, Q., Zhang, B., Chen, B. et al. (2014). Screening of biosurfactant producers from petroleum hydrocarbon contaminated sources in cold marine environments. Marine Pollution Bulletin 86 (1‐2): 402–410.
87 87 Cai, Q., Zhang, B., Chen, B. et al. (2015). Screening of biosurfactant‐producing bacteria from offshore oil and gas platforms in North Atlantic Canada. Environmental Monitoring and Assessment 187 (5): 284.
88 88 Hamed, S.B., Smii, L., Ghram, A., and Maaroufi, A. (2012). Screening of potential biosurfactant‐producing bacteria isolated from seawater biofilm. African Journal of Biotechnology 11 (77): 14153–14158.
89 89 Banat, I., Thavasi, R., and Jayalakshmi, S. (2011). Biosurfactants from marine bacterial isolates. In: Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology (ed. A. Mendez‐Vilas), 1367–1373. Formatex Research Center.
90 90 Saimmai, A., Tani, A., Sobhon, V., and Maneerat, S. (2012). Mangrove sediment, a new source of potential biosurfactant‐producing bacteria. Annals of Microbiology 62 (4): 1669–1679.
91 91 Konishi, M., Maruoka, N., Furuta, Y. et al. (2014). Biosurfactant‐producing yeasts widely inhabit various vegetables and fruits. Bioscience, Biotechnology, and Biochemistry 78 (3): 516–523.
92 92 Sena, H.H., Sanches, M.A., Rocha, D.F.S. et al. (2018). Production of biosurfactants by soil fungi isolated from the Amazon forest. International Journal of Microbiology 2018: 5684261.
93 93 Biniarz, P., Łukaszewicz, M., and Janek, T. (2017). Screening concepts, characterization and structural analysis of microbial‐derived bioactive lipopeptides: a review. Critical Reviews in Biotechnology 37 (3): 393–410.
94 94 Mnif, I. and Ghribi, D. (2015). Microbial derived surface active compounds: properties and screening concept. World Journal of Microbiology and Biotechnology 31 (7): 1001–1020.
95 95 Koh, A., Wong, A., Quinteros, A. et al. (2017). Influence of sophorolipid structure on interfacial properties of aqueous‐arabian light crude and related constituent emulsions. Journal of the American Oil Chemists' Society 94 (1): 107–119.
96 96 Jiménez‐Peñalver, P., Castillejos, M., Koh, A. et al. (2018). Production and characterization of sophorolipids from stearic acid by solid‐state fermentation, a cleaner alternative to chemical surfactants. Journal of Cleaner Production 172: 2735–2747.
97 97 Yeh, M.S., Wei, Y.H., and Chang, J.S. (2006). Bioreactor design for enhanced carrier‐assisted surfactin production with Bacillus subtilis. Process Biochemistry 41 (8): 1799–1805.
98 98 Vardar‐Sukan, F. (1998). Foaming: Consequences, prevention and destruction. Biotechnology Advances 16 (5): 913–948.
99 99 Saucedo‐Castañeda, G., Favela‐Torres, E., Viniegra‐González, G., Torres‐Mancera, M.T., Figueroa‐Montero, A., and Rosales Zamora, G. (2016). Sistema de respirometría con administración remota para el monitoreo en línea de la concentración de CO2 y O2 y flujo de los flujos de salida de procesos biológicos. Mexican patent 336733, Issued 22 January 2016.
100 100 Oliveira, M.R., Camilios‐Neto, D., Baldo, C. et al. (2014). Biosynthesis and production of sophorolipids. International Journal of Scientific and Technology Research 3 (11): 133–146.
101 101 Daverey, A. and Pakshirajan, K. (2010). Sophorolipids from Candida bombicola using mixed hydrophilic substrates: production, purification and characterization. Colloids and Surfaces B: Biointerfaces 79 (1): 246–253.
102 102 Marquardt, D.W. (1963). An algorithm for least‐squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics 11 (2): 431–441.
103 103 Levenspiel, O. (1999). Chemical Reaction Engineering, 3e. New York: Wiley.