Читать книгу Bioprospecting of Microorganism-Based Industrial Molecules - Группа авторов - Страница 93
References
Оглавление1 1 de Castro, M.L. (2011). Cosmetobolomics as an incipient ‘‐omics’ with high analytical involvement. TrAC Trends in Analytical Chemistry 30 (9): 1365–1371.
2 2 Rajput, N. (2016). Cosmetics market by category (skin & sun care products, hair care products, deodorants, makeup & colour cosmetics, fragrances) and by distribution channel (general departmental store, supermarkets, drug stores, brand outlets)‐global opportunity analysis and industry. Forecast: 2014–2022.
3 3 Zota, A.R. and Shamasunder, B. (2017). The environmental injustice of beauty: framing chemical exposures from beauty products as a health disparities concern. American Journal of Ostetrics and Gynaecology 217 (4): 418–421.
4 4 Shankar, P.R. and Subish, P. (2016). Fair skin in South Asia: an obsession? Journal of Pakistan Association of Dermatology 17 (2): 100–104.
5 5 Dadzie, O.E. and Petit, A. (2009). Skin bleaching: highlighting the misuse of cutaneous depigmenting agents. Journal of the European Academy of Dermatology and Venereology 23 (7): 741–750.
6 6 Traore, A., Kadeba, J.C., Niamba, P. et al. (2005). Use of cutaneous depigmenting products by women in two towns in Burkina Faso: epidemiologic data, motivations, products and side effects. International Journal of Dermatology 44: 30–32.
7 7 Karnani, A. (2007). Doing well by doing good—case study:‘Fair & Lovely’whitening cream. Strategic Management Journal 28 (13): 1351–1357.
8 8 Philips, A. (2004). Gendering colour: Identity, femininity and marriage in Kerala. Anthropologica: 253–272.
9 9 Peltzer, K., Pengpid, S., and James, C. (2016). The globalization of whitening: prevalence of skin lighteners (or bleachers) use and it's social correlates among university students in 26 countries. International Journal of Dermatology 55 (2): 165–172.
10 10 Landau, M. (2007). Exogenous factors in skin ageing. In Environmental Factors in Skin Diseases (Vol. 35, pp. 1‐13). Karger Publishers.
11 11 Hayflick, L. and Moorhead, P.S. (1961). The serial cultivation of human diploid cell strains. Experimental Cell Research 25 (3): 585–621.
12 12 Libertini, G. (2019). Ageing definition. In: Encyclopedia of Gerontology and Population Aging (eds. D. Gu and M.E. Dupre), 1–10. Cham: Springer International Publishing.
13 13 Kirkwood, T.B. and Austad, S.N. (2000). Why do we age? Nature 408 (6809): 233–238.
14 14 Jabłońska‐Trypuć, A., Krętowski, R., Kalinowska, M. et al. (2018). Possible mechanisms of the prevention of doxorubicin toxicity by cichoric acid—antioxidant nutrient. Nutrients 10 (1): 44.
15 15 Gu, Y., Han, J., Jiang, C., and Zhang, Y. (2020). Biomarkers, oxidative stress and autophagy in skin ageing. Ageing Research Reviews 101036.
16 16 Arda, O., Göksügür, N., and Tüzün, Y. (2014). Basic histological structure and functions of facial skin. Clinics in Dermatology 32 (1): 3–13.
17 17 Eckhart, L. and Zeeuwen, P.L. (2018). The skin barrier: Epidermis vs environment. Experimental Dermatology 27 (8): 805–806.
18 18 Parrado, C., Mercado‐Saenz, S., Perez‐Davo, A. et al. (2019). Environmental stressors on skin ageing. Mechanistic Insights. Frontiers in Pharmacology 10.
19 19 Rittié, L. and Fisher, G.J. (2015). Natural and sun‐induced ageing of human skin. Cold Spring Harbour Perspectives in Medicine 5 (1): a015370.
20 20 Olovnikov, A.M. (1973). A theory of marginotomy: the incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. Journal of Theoretical Biology 41 (1): 181–190.
21 21 Watson, J.D. (1972). Origin of concatemeric T7DNA. Nature: New Biology 239 (94): 197–201.
22 22 Murphy, M.P. (2009). How mitochondria produce reactive oxygen species. Biochemical Journal 417 (1): 1–13.
23 23 Hayyan, M., Hashim, M.A., and AlNashef, I.M. (2016). Superoxide ion: generation and chemical implications. Chemical Reviews 116 (5): 3029–3085.
24 24 Devasagayam, T.P.A., Tilak, J.C., Boloor, K.K. et al. (2004). Free radicals and antioxidants in human health: current status and prospects. Japi 52 (794804): 4.
25 25 Fisher, G.J., Quan, T., Purohit, T. et al. (2009). Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase‐1 in fibroblasts in aged human skin. The American Journal of Pathology 174 (1): 101–114.
26 26 Birkedal‐Hansen, H.W.G.I., Moore, W.G.I., Bodden, M.K. et al. (1993). Matrix metalloproteinases: a review. Critical Reviews in Oral Biology and Medicine 4 (2): 197–250.
27 27 Forrester, S.J., Kikuchi, D.S., Hernandes, M.S. et al. (2018). Reactive oxygen species in metabolic and inflammatory signaling. Circulation Research 122 (6): 877–902.
28 28 Haas, R.H. (2019). Mitochondrial dysfunction in aging and diseases of aging. Biology 8: 48.
29 29 Wiley, C.D., Velarde, M.C., Lecot, P. et al. (2016). Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metabolism 23 (2): 303–314.
30 30 Serrano, M., Lin, A.W., McCurrach, M.E. et al. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88 (5): 593–602.
31 31 Ghosh, K. and Capell, B.C. (2016). The senescence‐associated secretory phenotype: critical effector in skin cancer and ageing. Journal of Investigative Dermatology 136 (11): 2133–2139.
32 32 Smogorzewska, A. and de Lange, T. (2002). Different telomere damage signalling pathways in human and mouse cells. The EMBO Journal 21 (16): 4338–4348.
33 33 Munro, J., Barr, N.I., Ireland, H. et al. (2004). Histone deacetylase inhibitors induce a senescence‐like state in human cells by a p16‐dependent mechanism that is independent of a mitotic clock. Experimental Cell Research 295 (2): 525–538.
34 34 Kligman, L.H. (1986). Photoaging: manifestations, prevention, and treatment. Dermatologic Clinics 4 (3): 517–528.
35 35 Rhodes, A.R., Albert, L.S., Barnhill, R.L., and Weinstock, M.A. (1991). Sun‐induced freckles in children and young adults. A correlation of clinical and histopathologic features. Cancer 67 (7): 1990–2001.
36 36 Fisher, G.J., Datta, S.C., Talwar, H.S. et al. (1996). Molecular basis of sun‐induced premature skin ageing and retinoid antagonism. Nature 379 (6563): 335–339.
37 37 Kim, H.H., Lee, M.J., Lee, S.R. et al. (2005). Augmentation of UV‐induced skin wrinkling by infrared irradiation in hairless mice. Mechanisms of Ageing and Development 126 (11): 1170–1177.
38 38 Hatsukami, D.K., Stead, L.F., and Gupta, P.C. (2008). Tobacco addiction. The Lancet 371 (9629): 2027–2038.
39 39 Ernster, V.L., Grady, D., Miike, R. et al. (1995). Facial wrinkling in men and women, by smoking status. American Journal of Public Health 85 (1): 78–82.
40 40 Yin, L., Morita, A., and Tsuji, T. (2003). Tobacco smoke extract induces age‐related changes due to modulation of TGF‐β. Experimental Dermatology 12: 51–56.
41 41 Krutmann, J., Bouloc, A., Sore, G. et al. (2017). The skin ageing exposome. Journal of Dermatological Science 85 (3): 152–161.
42 42 Schikowski, T. and Hüls, A. (2020). Air pollution and skin aging. Current Environmental Health Reports 7 (1).
43 43 Brinkmann, V., Ale‐Agha, N., Haendeler, J., & Ventura, N. (2019). The Aryl Hydrocarbon Receptor (AhR) in the Aging Process: Another Puzzling Role for This Highly Conserved Transcription Factor. Frontiers in Physiology, 10.
44 44 Singh, J., Sharma, D., Kumar, G., and Sharma, N.R. (eds.) (2018). Microbial Bioprospecting for Sustainable Development. Springer.
45 45 Waites, M.J., Morgan, N.L., Rockey, J.S., and Higton, G. (2009). Industrial Microbiology: An Introduction. Wiley.
46 46 Sanghvi, G., Patel, H., Vaishnav, D. et al. (2016). A novel alkaline keratinase from Bacillus subtilis DP1 with potential utility in cosmetic formulation. International Journal of Biological Macromolecules 87: 256–262.
47 47 Maier, R.M. and Soberon‐Chavez, G. (2000). Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Applied Microbiology and Biotechnology 54 (5): 625–633.
48 48 Becker, L.C., Bergfeld, W.F., Belsito, D.V. et al. (2009). Final report of the safety assessment of hyaluronic acid, potassium hyaluronate, and sodium hyaluronate. International Journal of Toxicology 28: 5–67.
49 49 Marcellin, E., Steen, J.A., and Nielsen, L.K. (2014). Insight into hyaluronic acid molecular weight control. Applied Microbiology and Biotechnology 98 (16): 6947–6956.
50 50 Allemann, I.B. and Baumann, L. (2008). Hyaluronic acid gel (Juvéderm™) preparations in the treatment of facial wrinkles and folds. Clinical Interventions in Ageing 3 (4): 629.
51 51 Tzellos, T.G., Klagas, I., Vahtsevanos, K. et al. (2009). Extrinsic ageing in the human skin is associated with alterations in the expression of hyaluronic acid and its metabolizing enzymes. Experimental Dermatology 18 (12): 1028–1035.
52 52 Ganceviciene, R., Liakou, A.I., Theodoridis, A. et al. (2012). Skin anti‐ageing strategies. Dermato‐endocrinology 4 (3): 308–319.
53 53 Del Valle, E.M. (2004). Cyclodextrins and their uses: a review. Process Biochemistry 39 (9): 1033–1046.
54 54 Rajput, K.N., Patel, K.C., and Trivedi, U.B. (2016). β‐Cyclodextrin production by cyclodextrin glucanotransferase from an alkaliphile Microbacterium terrae KNR 9 using different starch substrates. Biotechnology Research International 2016.
55 55 Kim, M.H., Sohn, C.B., and Oh, T.K. (1998). Cloning and sequencing of a cyclodextrin glycosyltransferase gene from Brevibacillus brevis CD162 and its expression in Escherichia coli. FEMS Microbiology Letters 164 (2): 411–418.
56 56 Matsuda, H., Ito, K., Taki, A. et al. (1995). U.S. Patent No. 5,447,920. Washington, DC: U.S. Patent and Trademark Office.
57 57 Chawla, P.R., Bajaj, I.B., Survase, S.A., and Singhal, R.S. (2009). Microbial cellulose: fermentative production and applications. Food Technology and Biotechnology 47 (2): 107–124.
58 58 Çoban, E.P. and Biyik, H. (2011). Evaluation of different pH and temperatures for bacterial cellulose production in HS (Hestrin‐Scharmm) medium and beet molasses medium. African Journal of Microbiology Research 5 (9): 1037–1045.
59 59 Mohite, B.V., Salunke, B.K., and Patil, S.V. (2013). Enhanced production of bacterial cellulose by using Gluconacetobacter hansenii NCIM 2529 strain under shaking conditions. Applied Biochemistry and Biotechnology 169: 1497–1511.
60 60 Ioelovich, M. (2008). Cellulose as a nanostructured polymer: a short review. BioResources 3 (4): 1403–1418.
61 61 Amnuaikit, T., Chusuit, T., Raknam, P., and Boonme, P. (2011). Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction. Medical Devices (Auckland, NZ) 4: 77.
62 62 Lephart, E.D. (2019). Equol’s efficacy is greater than astaxanthin for antioxidants, extracellular matrix integrity & breakdown, growth factors and inflammatory biomarkers via human skin gene expression analysis. Journal of Functional Foods 59: 380–393.
63 63 Lephart, E.D. (2017). Resveratrol, 4′ acetoxy resveratrol, R‐equol, racemic equol or S‐equol as cosmeceuticals to improve dermal health. International Journal of Molecular Sciences 18 (6): 1193.
64 64 Gopaul, R., Knaggs, H.E., and Lephart, E.D. (2012). Biochemical investigation and gene analysis of equol: a plant and soy‐derived isoflavonoid with antiaging and antioxidant properties with potential human skin applications. BioFactors 38 (1): 44–52.
65 65 Oyama, A., Ueno, T., Uchiyama, S. et al. (2012). The effects of natural S‐equol supplementation on skin ageing in postmenopausal women: a pilot randomized placebo‐controlled trial. Menopause 19 (2): 202–210.
66 66 Setchell, K.D., Brown, N.M., and Lydeking‐Olsen, E. (2002). The clinical importance of the metabolite equol – a clue to the effectiveness of soy and its isoflavones. The Journal of Nutrition 132 (12): 3577–3584.
67 67 Meng, T.X., Zhang, C.F., Miyamoto, T. et al. (2012). The melanin biosynthesis stimulating compounds isolated from the fruiting bodies of Pleurotus citrinopileatus. Journal of Cosmetics. Dermatological Sciences and Applications 2 (03): 151.
68 68 Oh, M.J., Hamid, M.A., Ngadiran, S. et al. (2011). Ficus deltoidea (Mas cotek) extract exerted anti‐melanogenic activity by preventing tyrosinase activity in vitro and by suppressing tyrosinase gene expression in B16F1 melanoma cells. Archives of Dermatological Research 303 (3): 161–170.
69 69 Saranraj, P. and Naidu, M.A. (2013). Hyaluronic acid production and its applications a review. International Journal of Pharmaceutical and Biological Archiv 4 (5): 853–859.
70 70 Dudek‐Makuch, M. and Studzińska‐Sroka, E. (2015). Horse chestnut–efficacy and safety in chronic venous insufficiency: an overview. Revista Brasileira de Farmacognosia 25 (5): 533–541.
71 71 Kim, S.Y., Go, K.C., Song, Y.S. et al. (2014). Extract of the mycelium of T. matsutake inhibits elastase activity and TPA‐induced MMP‐1 expression in human fibroblasts. International Journal of Molecular Medicine 34 (6): 1613–1621.
72 72 Ndlovu, G., Fouche, G., Tselanyane, M. et al. (2013). in vitro determination of the anti‐ageing potential of four southern African medicinal plants. BMC Complementary and Alternative Medicine 13 (1): 304.
73 73 Thomas, N.V., Manivasagan, P., and Kim, S.K. (2014). Potential matrix metalloproteinase inhibitors from edible marine algae: a review. Environmental Toxicology and Pharmacology 37 (3): 1090–1100.
74 74 Kwak, J.Y., Park, S., Seok, J.K. et al. (2015). Ascorbyl curates as multifunctional cosmeceutical agents that inhibit melanogenesis and enhance collagen synthesis. Archives of Dermatological Research 307 (7): 635–643.
75 75 Pimentel, F.B., Alves, R.C., Rodrigues, F. et al. (2018). Macroalgae‐derived ingredients for cosmetic industry – an update. Cosmetics 5 (1).
76 76 Andersen, R.A. (1992). Diversity of eukaryotic algae. Biodiversity and Conservation 1 (4): 267–292.
77 77 Sahoo, D. and Seckbach, J. (2015). The Algae World. Springer.
78 78 Kim, S.‐K. and Chojnacka, K. (2015). Marine Algae Extracts: Processes, Products, and Applications. Wiley.
79 79 Gupta, P.L., Rajput, M., Oza, T. et al. (2019). The eminence of microbial products in the cosmetic industry. Natural Products and Bioprospecting 9 (4): 267–278.
80 80 de Jesus Raposo, M.F., de Morais, A.M.B., and de Morais, R.M.S.C. (2015). Marine polysaccharides from algae with potential biomedical applications. Marine Drugs 13 (5): 2967–3028.
81 81 Saewan, N. and Jimtaisong, A. (2015). Natural products as photoprotection. Journal of Cosmetic Dermatology 14 (1): 47–63.
82 82 Wang, H.‐M.D., Chen, C.‐C., Huynh, P., and Chang, J.‐S. (2015). Exploring the potential of using algae in cosmetics. Bioresource Technology 184: 355–362.
83 83 Sá, A.G.A., de Meneses, A.C., de Araújo, P.H.H., and Oliveira, D.d. (2017). A review on the enzymatic synthesis of aromatic esters used as flavour ingredients for food, cosmetics and pharmaceuticals industries. Trends in Food Science & Technology 69: 95–105.
84 84 Priyan Shanura Fernando, I., Kim, K.‐N., Kim, D., and Jeon, Y.‐J. (2018). Algal polysaccharides: potential bioactive substances for cosmeceutical applications. Critical Reviews in Biotechnology: 1–15.
85 85 Wang, H.‐M., Chou, Y.‐T., Wen, Z.‐H. et al. (2013). Novel biodegradable porous scaffold applied to skin regeneration. PLoS One 8 (6): e56330.
86 86 Wang, J., Jin, W., Hou, Y. et al. (2013). Chemical composition and moisture‐absorption/retention ability of polysaccharides extracted from five algae. International Journal of Biological Macromolecules 57: 26–29.
87 87 Fabrowska, J., Łęska, B., Schroeder, G., Messyasz, B., & Pikosz, M. (2015). Biomass and extracts of algae as material for cosmetics. In Marine Algae Extracts (eds S.‐K. Kim and K. Chojnacka) (pp. 681–706). Wiley. https://doi.org/10.1002/9783527679577.ch38
88 88 Pereira, L. (2018). Seaweeds as source of bioactive substances and skin care therapy – cosmeceuticals, algotheraphy, and thalassotherapy. Cosmetics 5 (4): 68. https://doi.org/10.3390/cosmetics5040068.
89 89 Qin, Y. (2018). 1 – seaweed bioresources. In: Bioactive Seaweeds for Food Applications (ed. Y. Qin), 3–24. Academic Press.
90 90 Wijesekara, I., Pangestuti, R., and Kim, S.‐K. (2011). Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydrate Polymers 84 (1): 14–21.
91 91 El Gamal, A.A. (2010). Biological importance of marine algae. Saudi Pharmaceutical Journal 18 (1): 1–25.
92 92 Kim, J.H., Lee, J.‐E., Kim, K.H., and Kang, N.J. (2018). Beneficial effects of marine algae‐derived carbohydrates for skin health. Marine Drugs 16 (11).
93 93 Pallela, R., Na‐Young, Y., and Kim, S.‐K. (2010). Anti‐photoaging and photoprotective compounds derived from marine organisms. Marine Drugs 8 (4): 1189–1202.
94 94 Teas, J. and Irhimeh, M.R. (2017). Melanoma and brown seaweed: an integrative hypothesis. Journal of Applied Phycology 29 (2): 941–948.
95 95 Song, Y.S., Li, H., Balcos, M.C. et al. (2014). Fucoidan promotes the reconstruction of skin equivalents. The Korean Journal of Physiology & Pharmacology: Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology 18 (4): 327–331.
96 96 Fitton, J.H., Dell’Acqua, G., Gardiner, V.‐A. et al. (2015). Topical benefits of two fucoidan‐rich extracts from marine macroalgae. Cosmetics 2 (2): 66–81.
97 97 Li, Y.‐J., Han, Z., Ge, L. et al. (2016). C‐phycocyanin protects against low fertility by inhibiting reactive oxygen species in ageing mice. Oncotarget 7 (14): 17393–17409.
98 98 Barg, H. (2013). Filler composition comprising beta‐glucans (United States Patent No. US20130196944A1). https://patents.google.com/patent/US20130196944A1/en
99 99 Yvin, J.‐C., Levasseur, F., and Hud’Homme, F. (1999). Use of laminarin and oligosaccharides derived therefrom in cosmetics and for preparing a skin treatment drug
100 100 Saito, M. (2005). Porphyran‐containing cosmetic (Patent No. JP2005336148A). https://patents.google.com/patent/JP2005336148A/en
101 101 Cheong, K.‐L., Qiu, H.‐M., Du, H. et al. (2018). Oligosaccharides derived from red seaweed: production, properties, and potential health and cosmetic applications. Molecules 23 (10): 2451.
102 102 Laurent, L., & Bebot, C. (2018). Cosmetic composition comprising at least one lambda‐carrageenan polysaccharide in combination with at least one specific polyol, and process for the cosmetic treatment of keratin fibers with the composition, and use of the composition for hair care (United States Patent No. US20180296458A1).
103 103 Pangestuti, R. and Kim, S.‐K. (2011). Biological activities and health benefit effects of natural pigments derived from marine algae. Journal of Functional Foods 3 (4): 255–266.
104 104 Kidgell, J.T., Magnusson, M., de Nys, R., and Glasson, C.R.K. (2019). Ulvan: a systematic review of extraction, composition and function. Algal Research 39: 101422.
105 105 Ray, B. and Lahaye, M. (1995). Cell‐wall polysaccharides from the marine green alga Ulva “rigida” (ulvales, Chlorophyta). Extraction and chemical composition. Carbohydrate Research 274: 251–261.
106 106 Gong, M. and Bassi, A. (2016). Carotenoids from microalgae: a review of recent developments. Biotechnology Advances 34 (8): 1396–1412.
107 107 Novoveská, L., Ross, M.E., Stanley, M.S. et al. (2019). Microalgal carotenoids: a review of production, current markets, regulations, and future direction. Marine Drugs 17 (11).
108 108 Fitzpatrick, J.E., High, W.A., and Kyle, W.L. (2018). Discolorations of the skin. In: Urgent Care Dermatology: Symptom‐Based Diagnosis (pp. 441–460) (eds. J.E. Fitzpatrick, W.A. High and W.L. Kyle). Elsevier.
109 109 Sharif, H.R., Goff, H.D., Majeed, H. et al. (2017). Physicochemical stability of β‐carotene and α‐tocopherol enriched nanoemulsions: Influence of carrier oil, emulsifier and antioxidant. Colloids and Surfaces A: Physicochemical and Engineering Aspects 529: 550–559.
110 110 Polyakov, N.E., Leshina, T.V., Konovalova, T.A., and Kispert, L.D. (2001). Carotenoids as scavengers of free radicals in a Fenton reaction: Antioxidants or pro‐oxidants? Free Radical Biology & Medicine 31 (3): 398–404.
111 111 Çelik, S.E., Bekdeser, B., Tufan, A.N., and Apak, R. (2017). Modified radical scavenging and antioxidant activity measurement of β‐Carotene with β‐Cyclodextrins complexation in aqueous medium. Analytical Sciences 33 (3): 299–305.
112 112 Solymosi, K. and Mysliwa‐Kurdziel, B. (2017). Chlorophylls and their derivatives used in food industry and medicine. Mini Reviews in Medicinal Chemistry 17 (13): 1194–1222.
113 113 Busch, T., Cengel, K.A., and Finlay, J. (2009). Pheophorbide a as a photosensitizer in photodynamic therapy: in vivo considerations. Cancer Biology & Therapy 8 (6): 540–542.
114 114 Xodo, L.E., Rapozzi, V., Zacchigna, M. et al. (2012). The chlorophyll catabolite pheophorbide as a photosensitizer for photodynamic therapy. Current Medicinal Chemistry 19 (6): 799–807.
115 115 Pangestuti, R., Siahaan, E.A., and Kim, S.‐K. (2018). Photoprotective substances derived from marine algae. Marine Drugs 16 (11) https://doi.org/10.3390/md16110399.
116 116 Peng, J., Yuan, J.‐P., Wu, C.‐F., and Wang, J.‐H. (2011). Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Marine Drugs 9 (10): 1806–1828.
117 117 Shimoda, H., Tanaka, J., Shan, S.‐J., and Maoka, T. (2010). The anti‐pigmentary activity of fucoxanthin and its influence on skin mRNA expression of melanogenic molecules. The Journal of Pharmacy and Pharmacology 62 (9): 1137–1145.
118 118 Bermejo Román, R., Alvárez‐Pez, J.M., Acién Fernández, F.G., and Molina Grima, E. (2002). Recovery of pure B‐phycoerythrin from the microalga Porphyridium cruentum. Journal of Biotechnology 93 (1): 73–85.
119 119 Romay, C. and Gonzalez, R. (2000). Phycocyanin is an antioxidant protector of human erythrocytes against lysis by peroxyl radicals. Journal of Pharmacy and Pharmacology 52 (4): 367–368.
120 120 Singh, N.K., Sonani, R.R., Awasthi, A. et al. (2016). Phycocyanin moderates ageing and proteotoxicity in Caenorhabditis elegans. Journal of Applied Phycology 28 (4): 2407–2417.
121 121 Kim, K.M., Lee, J.Y., I'm, A.‐R., and Chae, S. (2018). Phycocyanin protects against UVB‐induced apoptosis through the PKC α/βII‐Nrf‐2/HO‐1 dependent pathway in human primary skin cells. Molecules 23 (2): 478.
122 122 Bedoux, G., Hardouin, K., Burlot, A.S., and Bourgougnon, N. (2014). Bioactive components from seaweeds: cosmetic applications and future development. In: Advances in Botanical Research, vol. 71 (ed. N. Bourgougnon), 345–378. Academic Press.
123 123 Babitha, S., & Kim, E.‐K. (2011). Effect of Marine Cosmeceuticals on the Pigmentation of Skin. In S.‐K. Kim, Marine Cosmeceuticals (pp. 63–66). CRC Press.
124 124 Chaves‐Peña, P., de la Coba, F., Figueroa, F.L., and Korbee, N. (2020). Quantitative and qualitative HPLC analysis of mycosporine‐like amino acids extracted in distilled water for cosmetical uses in four rhodophyta. Marine Drugs 18 (1): 27.
125 125 Li, B., Lu, F., Wei, X., and Zhao, R. (2008). Fucoidan: structure and bioactivity. Molecules 13 (8): 1671–1695.
126 126 Pielesz, A. and Paluch, J. (2014). Fucoidan as an inhibitor of thermally induced collagen glycation examined by acetate electrophoresis. Electrophoresis 35 (15): 2237–2244.
127 127 Fujimura, T., Tsukahara, K., Moriwaki, S. et al. (2000). Effects of natural product extract on contraction and mechanical properties of fibroblast populated collagen gel. Biological & Pharmaceutical Bulletin 23 (3): 291–297.
128 128 Smit, N., Vicanova, J., and Pavel, S. (2009). The hunt for natural skin whitening agents. International Journal of Molecular Sciences 10 (12): 5326–5349.
129 129 Jesumani, V., Du, H., Pei, P. et al. (2020). Comparative study on skin protection activity of polyphenol‐rich extract and polysaccharide‐rich extract from Sargassum vachellianum. PLoS One 15 (1): e0227308.
130 130 Bagal Kestwal, D.R., Pan, M.H., and Chiang, B.‐H. (2019). Properties and applications of gelatin, pectin, and carrageenan gels. In: Bio Monomers for Green Polymeric Composite Materials (eds. P. Visakh, O. Bayraktar and G. Menon), 117–140. Wiley. https://doi.org/10.1002/9781119301714.ch6.
131 131 Kozlowska, J., Pauter, K., and Sionkowska, A. (2018). Carrageenan‐based hydrogels: effect of sorbitol and glycerin on the stability, swelling and mechanical properties. Polymer Testing 67: 7–11.
132 132 Thevanayagam, H., Mohamed, S.M., and Chu, W.‐L. (2014). Assessment of UVB‐photoprotective and antioxidative activities of carrageenan in keratinocytes. Journal of Applied Phycology 26 (4): 1813–1821.
133 133 Ariga, O., Okamoto, N., Harimoto, N., and Nakasaki, K. (2014). Purification and characterization of α‐neoagarooligosaccharide hydrolase from Cellvibrio sp. OA‐2007. Journal of Microbiology and Biotechnology 24 (1): 48–51. https://doi.org/10.4014/jmb.1307.07018.
134 134 Chen, H.‐M. and Yan, X.‐J. (2005). Antioxidant activities of agaro‐oligosaccharides with different degrees of polymerization in the cell‐based system. Biochimica et Biophysica Acta 1722 (1): 103–111.
135 135 Orive, G., Hernández, R.M., Gascón, A.R., and Pedraz, J.L. (2006). Encapsulation of cells in alginate gels. In: Immobilization of Enzymes and Cells (ed. J.M. Guisan), 345–355. Humana Press.
136 136 Aderibigbe, B.A. and Buyana, B. (2018). Alginate in wound dressings. Pharmaceutics 10 (2).
137 137 Dantas, M.D.M., Cavalcante, D.R.R., Araújo, F.E.N. et al. (2011). Improvement of dermal burn healing by combining sodium alginate/chitosan‐based films and low level laser therapy. Journal of Photochemistry and Photobiology. B, Biology 105 (1): 51–59.
138 138 Huang, S. and Fu, X. (2010). Naturally derived materials‐based cell and drug delivery systems in skin regeneration. Journal of Controlled Release: Official Journal of the Controlled Release Society 142 (2): 149–159.
139 139 Sathasivam, R. and Ki, J.‐S. (2018). A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Marine Drugs 16 (1).
140 140 Benedetti, S., Benvenuti, F., Pagliarani, S. et al. (2004). Antioxidant properties of a novel phycocyanin extract from the blue‐green alga Aphanizomenon flos‐aquae. Life Sciences 75 (19): 2353–2362.
141 141 Cikoš, A.‐M., Jerković, I., Molnar, M. et al. (2019). New trends for macroalgal natural products applications. Natural Product Research 0 (0): 1–12.
142 142 Sonani, R.R., Rastogi, R.P., Singh, N.K. et al. (2017). Phycoerythrin averts intracellular ROS generation and physiological functional decline in eukaryotes under oxidative stress. Protoplasma 254 (2): 849–862.
143 143 Varela, J.C., Pereira, H., Vila, M., and León, R. (2015). Production of carotenoids by microalgae: achievements and challenges. Photosynthesis Research 125 (3): 423–436.
144 144 Esatbeyoglu, T. and Rimbach, G. (2017). Canthaxanthin: from molecule to function. Molecular Nutrition & Food Research 61 (6).
145 145 Koller, M., Muhr, A., and Braunegg, G. (2014). Microalgae as versatile cellular factories for valued products. Algal Research 6: 52–63.
146 146 Camera, E., Mastrofrancesco, A., Fabbri, C. et al. (2009). Astaxanthin, canthaxanthin and beta‐carotene differently affect UVA‐induced oxidative damage and expression of oxidative stress‐responsive enzymes. Experimental Dermatology 18 (3): 222–231.
147 147 Tominaga, K., Hongo, N., Karato, M., and Yamashita, E. (2012). Cosmetic benefits of astaxanthin on humans subjects. Acta Biochimica Polonica 59 (1): 43–47.
148 148 Shen, C.‐T., Chen, P.‐Y., Wu, J.‐J. et al. (2011). Purification of algal anti‐tyrosinase zeaxanthin from Nannochloropsis oculata using supercritical anti‐solvent precipitation. The Journal of Supercritical Fluids 55 (3): 955–962.
149 149 Juturu, V., Bowman, J.P., and Deshpande, J. (2016). Overall skin tone and skin‐lightening‐improving effects with oral supplementation of lutein and zeaxanthin isomers: a double‐blind, placebo‐controlled clinical trial. Clinical, Cosmetic and Investigational Dermatology 9: 325–332.
150 150 Kim, H.‐M., Jung, J.H., Kim, J.Y. et al. (2019). The protective effect of Violaxanthin from Nannochloropsis oceanica against ultraviolet b‐induced damage in normal human dermal fibroblasts. Photochemistry and Photobiology 95 (2): 595–604.
151 151 Inoue, N., Yamano, N., Sakata, K. et al. The Sulfated Polysaccharide Porphyran Reduces Apolipoprotein B100 Secretion and Lipid Synthesis in HepG2 Cells. Bioscience, Biotechnology, and Biochemistry 73 (2): 447–449. https://doi.org/10.1271/bbb.80688 . (23 February 2009).