Читать книгу Superatoms - Группа авторов - Страница 12

References

Оглавление

1 1 Becker, E.W., Bier, K., and Henkes, W. (1956). Strahlen aus kondensierten atomen und Molekeln im hochvakuum. Eur. Phys. J. A 146: 333–338.

2 2 Kubo, R. (1962). Electronic properties of metallic fine particles. I. J. Phys. Soc. Jpn. 17: 975–986.

3 3 Davenas, J. and Rabette, P. (1982). Contribution of clusters physics to materials science and technology. Proceedings of the NATO Advanced Study Institute on Impact of Clusters Physics in Materials Science and Technology, Cap d’Agde, France (1986).

4 4 Jena, P., Rao, B., and Khanna, S. (1987). Physics and Chemistry of Small Clusters. Richmond, VA: Virginia Commonwealth University.

5 5 Jena, P., Khanna, S., and Rao, B. (1992). Physics and Chemistry of Finite Systems: From Clusters to Crystals. New York: Springer Science & Business Media.

6 6 Sugano, S. (1991). Microcluster Physics. New York: Springer.

7 7 Sattler, K. (1996). Cluster Assembled Materials. New York: CRC Press.

8 8 Duncan, M.A. (1998). Advances in Metal and Semiconductor Clusters: Cluster Materials. New York: Elsevier.

9 9 Castleman, A.W. and Khanna, S.N. (2003). Quantum Phenomena in Clusters and Nanostructures. Berlin, Heidelberg: Springer.

10 10 Jena, P. and Castleman, A. Jr. (2010). Nanoclusters–A Bridge Across Disciplines. New York: Elsevier.

11 11 Chattaraj, P.K. (2010). Aromaticity and Metal Clusters. New York: CRC Press.

12 12 Campbell, E.E.B. (2011). Proceedings of Nobel Symposium. Sweden: World Scientific Publishing Co.

13 13 Alonso, J.A. (2012). Structure and Properties of Atomic Nanoclusters, 2e. River Edge, NJ: World Scientific.

14 14 Jellinek, J. (2012). Theory of Atomic and Molecular Clusters: With a Glimpse at Experiments. New York: Springer Science & Business Media.

15 15 Meiwes‐Broer, K.‐H. (2012). Metal Clusters at Surfaces: Structure, Quantum Properties, Physical Chemistry. New York: Springer Science & Business Media.

16 16 Milani, P. and Iannotta, S. (2012). Cluster Beam Synthesis of Nanostructured Materials. New York: Springer Science & Business Media.

17 17 Ciobanu, C.V., Wang, C.‐Z., and Ho, K.‐M. (2013). Atomic Structure Prediction of Nanostructures, Clusters and Surfaces. New York: John Wiley & Sons.

18 18 Kawazoe, Y., Kondow, T., and Ohno, K. (2013). Clusters and Nanomaterials: Theory and Experiment. New York: Springer Science & Business Media.

19 19 Heiles, S. and Schafer, R. (2014). Dielectric Properties of Isolated Clusters: Beam Deflection Studies. New York: Springer.

20 20 Tsukuda, T. and Hakkinen, H. (2015). Protected Metal Clusters: From Fundamentals to Applications. New York: Elsevier.

21 21 Chapon, C., Gillet, M.F., and Henry, C.R. (1989). Small Particles and Inorganic Clusters: Proceedings of the Fourth International Meeting on Small Particles and Inorganic Clusters University Aix‐Marseille III Aix‐en‐Provence, France, 5–9 July 1988. New York: Springer Science & Business Media.

22 22 Jena, P. and Behera, S.N. (1996). Clusters and Nanostructured Materials. New York: Nova Publishers.

23 23 Jena, P., Khanna, S., and Rao, B. (1996). Proceedings of the Science and Technology of Atomically Engineered Materials: Richmond, Virginia, USA, Oct. 30–Nov. 4. Singapore: World Scientific.

24 24 Jena, P., Khanna, S., and Rao, B. (2000). Cluster and Nanostructure Interfaces. Singapore: World Scientific.

25 25 Jena, P., Khanna, S., and Rao, B. (2005). Clusters and Nano‐Assemblies: Physical and Biological Systems. Singapore: World Scientific.

26 26 Sahu, S., Choudhury, R., and Jena, P. (2006). Nano‐Scale Materials: From Science to Technology. New York: Nova Publishers.

27 27 Band, E. and Muetterties, E.L. (1978). Mechanistic features of metal cluster rearrangements. Chem. Rev. 78: 639–658.

28 28 Muetterties, E.L., Rhodin, T.N., Band, E. et al. (1979). Clusters and surfaces. Chem. Rev. 79: 91–137.

29 29 Beuhler, R. and Friedman, L. (1986). Larger cluster ion impact phenomena. Chem. Rev. 86: 521–537.

30 30 Castleman, A.W. and Keesee, R.G. (1986). Ionic clusters. Chem. Rev. 86: 589–618.

31 31 Koutecky, J. and Fantucci, P. (1986). Theoretical aspects of metal atom clusters. Chem. Rev. 86: 539–587.

32 32 Bonacic‐Koutecky, V., Fantucci, P., and Koutecky, J. (1991). Quantum chemistry of small clusters of elements of groups Ia, Ib, and IIa: fundamental concepts, predictions, and interpretation of experiments. Chem. Rev. 91: 1035–1108.

33 33 Bonačić‐Koutecký, V. and Mitrić, R. (2005). Theoretical exploration of ultrafast dynamics in atomic clusters: analysis and control. Chem. Rev. 105: 11–66.

34 34 Berry, R.S. (1993). Potential surfaces and dynamics: what clusters tell us. Chem. Rev. 93: 2379–2394.

35 35 Morse, M.D. (1986). Clusters of transition‐metal atoms. Chem. Rev. 86: 1049–1109.

36 36 Fendler, J.H. (1987). Atomic and molecular clusters in membrane mimetic chemistry. Chem. Rev. 87: 877–899.

37 37 Jelski, D.A. and George, T.F. (1988). Clusters: link between molecules and solids. J. Chem. Educ. 65: 879–883.

38 38 Kappes, M.M. (1988). Experimental studies of gas‐phase main‐group metal clusters. Chem. Rev. 88: 369–389.

39 39 Weltner, W. and Van Zee, R.J. (1989). Carbon molecules, ions, and clusters. Chem. Rev. 89: 1713–1747.

40 40 Van Orden, A. and Saykally, R.J. (1998). Small carbon clusters: spectroscopy, structure, and energetics. Chem. Rev. 98: 2313–2358.

41 41 Kong, X.‐J., Long, L.‐S., Zheng, Z. et al. (2010). Keeping the ball rolling: fullerene‐like molecular clusters. Acc. Chem. Res. 43: 201–209.

42 42 Adams, R.D. (1989). Metal cluster complexes containing heteroatom‐substituted carbene. ligands. Chem. Rev. 89: 1703–1712.

43 43 Mingos, D.M.P., Slee, T., and Zhenyang, L. (1990). Bonding models for ligated and bare clusters. Chem. Rev. 90: 383–402.

44 44 Leutwyler, S. and Boesiger, J. (1990). Rare‐gas solvent clusters: spectra, structures, and order‐disorder transitions. Chem. Rev. 90: 489–507.

45 45 Chalasinski, G. and Szczesniak, M.M. (1994). Origins of structure and energetics of van der Waals clusters from ab Initio calculations. Chem. Rev. 94: 1723–1765.

46 46 Shang, Q.Y. and Bernstein, E.R. (1994). Energetics, dynamics, and reactions of Rydberg state molecules in van der Waals clusters. Chem. Rev. 94: 2015–2025.

47 47 Garvey, J.F., Herron, W.J., and Vaidyanathan, G. (1994). Probing the structure and reactivity of hydrogen‐bonded clusters of the type {M}n{H2O}H+, via the observation of magic numbers. Chem. Rev. 94: 1999–2014.

48 48 Plesek, J. (1992). Potential applications of the boron cluster compounds. Chem. Rev. 92: 269–278.

49 49 Hawthorne, M.F. and Maderna, A. (1999). Applications of radiolabeled boron clusters to the diagnosis and treatment of cancer. Chem. Rev. 99: 3421–3434.

50 50 Schmid, G. (1992). Large clusters and colloids: metals in the embryonic state. Chem. Rev. 92: 1709–1727.

51 51 Parent, D.C. and Anderson, S.L. (1992). Chemistry of metal and semimetal cluster ions. Chem. Rev. 92: 1541–1565.

52 52 Brutschy, B. (1992). Ion‐molecule reactions within molecular clusters. Chem. Rev. 92: 1567–1587.

53 53 Illenberger, E. (1992). Electron‐attachment reactions in molecular clusters. Chem. Rev. 92: 1589–1609.

54 54 Hobza, P., Selzle, H.L., and Schlag, E.W. (1994). Structure and properties of benzene‐containing molecular clusters: nonempirical ab initio calculations and experiments. Chem. Rev. 94: 1767–1785.

55 55 Kim, K.S., Tarakeshwar, P., and Lee, J.Y. (2000). Molecular clusters of π‐systems: theoretical studies of structures, spectra, and origin of interaction energies. Chem. Rev. 100: 4145–4186.

56 56 Sun, T. and Seff, K. (1994). Silver clusters and chemistry in zeolites. Chem. Rev. 94: 857–870.

57 57 Braga, D., Dyson, P.J., Grepioni, F., and Johnson, B.F.G. (1994). Arene clusters. Chem. Rev. 94: 1585–1620.

58 58 Gates, B.C. (1995). Supported metal clusters: synthesis, structure, and catalysis. Chem. Rev. 95: 511–522.

59 59 Alexeev, O.S. and Gates, B.C. (2003). Supported bimetallic cluster catalysts. Ind. Eng. Chem. Res. 42: 1571–1587.

60 60 Yachandra, V.K., Sauer, K., and Klein, M.P. (1996). Manganese cluster in photosynthesis: where plants oxidize water to dioxygen. Chem. Rev. 96: 2927–2950.

61 61 Bačić, Z. and Miller, R.E. (1996). Molecular clusters: structure and dynamics of weakly bound systems. J. Phys. Chem. 100: 12945–12959.

62 62 Ogino, H., Inomata, S., and Tobita, H. (1998). Abiological iron‐sulfur clusters. Chem. Rev. 98: 2093–2122.

63 63 Henderson, R.A. (2005). Mechanistic studies on synthetic Fe−S‐based clusters and their relevance to the action of nitrogenases. Chem. Rev. 105: 2365–2438.

64 64 Lee, S.C., Lo, W., and Holm, R.H. (2014). Developments in the biomimetic chemistry of cubane‐type and higher nuclearity iron‐sulfur clusters. Chem. Rev. 114: 3579–3600.

65 65 Desfrançois, C., Carles, S., and Schermann, J.P. (2000). Weakly bound clusters of biological interest. Chem. Rev. 100: 3943–3962.

66 66 Buck, U. and Huisken, F. (2000). Infrared spectroscopy of size‐selected water and methanol clusters. Chem. Rev. 100: 3863–3890.

67 67 Rohmer, M.‐M., Bénard, M., and Poblet, J.‐M. (2000). Structure, reactivity, and growth pathways of metallocarbohedrenes M8C12 and transition metal/carbon clusters and nanocrystals: a challenge to computational chemistry. Chem. Rev. 100: 495–542.

68 68 Dedonder‐Lardeux, C., Grégoire, G., Jouvet, C. et al. (2000). Charge separation in molecular clusters: dissolution of a salt in a salt−(solvent)n cluster. Chem. Rev. 100: 4023–4038.

69 69 Niedner‐Schatteburg, G. and Bondybey, V.E. (2000). FT‐ICR studies of solvation effects in ionic water cluster reactions. Chem. Rev. 100: 4059–4086.

70 70 Zhong, Q. and Castleman, A.W. (2000). An ultrafast glimpse of cluster solvation effects on reaction dynamics. Chem. Rev. 100: 4039–4058.

71 71 Stace, A.J. (2002). Metal ion solvation in the gas phase: the quest for higher oxidation states. J. Phys. Chem. A 106: 7993–8005.

72 72 Bieske, E.J. and Dopfer, O. (2000). High‐resolution spectroscopy of cluster ions. Chem. Rev. 100: 3963–3998.

73 73 Bieske, E.J. and Maier, J.P. (1993). Spectroscopic studies of ionic complexes and clusters. Chem. Rev. 93: 2603–2621.

74 74 Celii, F.G. and Janda, K.C. (1986). Vibrational spectroscopy, photochemistry, and photophysics of molecular clusters. Chem. Rev. 86: 507–520.

75 75 Neusser, H.J. and Siglow, K. (2000). High‐resolution ultraviolet spectroscopy of neutral and ionic clusters: hydrogen bonding and the external heavy atom effect. Chem. Rev. 100: 3921–3942.

76 76 Alonso, J.A. (2000). Electronic and atomic structure, and magnetism of transition‐metal clusters. Chem. Rev. 100: 637–678.

77 77 Boldyrev, A.I. and Wang, L.‐S. (2001). Beyond classical stoichiometry: experiment and theory. J. Phys. Chem. A 105: 10759–10775.

78 78 Gabriel, J.‐C.P., Boubekeur, K., Uriel, S., and Batail, P. (2001). Chemistry of hexanuclear rhenium chalcohalide clusters. Chem. Rev. 101: 2037–2066.

79 79 Lombardi, J.R. and Davis, B. (2002). Periodic properties of force constants of small transition‐metal and lanthanide clusters. Chem. Rev. 102: 2431–2460.

80 80 Lee, S.C. and Holm, R.H. (2004). The clusters of nitrogenase: synthetic methodology in the construction of weak‐field clusters. Chem. Rev. 104: 1135–1158.

81 81 Dermota, T.E., Zhong, Q., and Castleman, A.W. (2004). Ultrafast dynamics in cluster systems. Chem. Rev. 104: 1861–1886.

82 82 Chisholm, M.H. and Macintosh, A.M. (2005). Linking multiple bonds between metal atoms: clusters, dimers of “dimers”, and higher ordered assemblies. Chem. Rev. 105: 2949–2976.

83 83 Sevov, S.C. and Goicoechea, J.M. (2006). Chemistry of deltahedral Zintl ions. Organometallics 25: 5678–5692.

84 84 Ferrando, R., Jellinek, J., and Johnston, R.L. (2008). Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108: 845–910.

85 85 Erdemir, D., Lee, A.Y., and Myerson, A.S. (2009). Nucleation of crystals from solution: classical and two‐step models. Acc. Chem. Res. 42: 621–629.

86 86 Schnöckel, H. (2010). Structures and properties of metalloid Al and Ga clusters open our eyes to the diversity and complexity of fundamental chemical and physical processes during formation and dissolution of metals. Chem. Rev. 110: 4125–4163.

87 87 Qiu, J. and Burns, P.C. (2013). Clusters of actinides with oxide, peroxide, or hydroxide bridges. Chem. Rev. 113: 1097–1120.

88 88 Yano, J. and Yachandra, V. (2014). Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem. Rev. 114: 4175–4205.

89 89 Cruz‐Olvera, D., de la Trinidad Vasquez, A., Geudtner, G. et al. (2015). Transition‐state searches in metal clusters by first‐principle methods. J. Phys. Chem. A 119: 1494–1501.

90 90 Fernando, A., Weerawardene, K.L.D.M., Karimova, N.V., and Aikens, C.M. (2015). Quantum mechanical studies of large metal, metal oxide, and metal chalcogenide nanoparticles and clusters. Chem. Rev. 115: 6112–6216.

91 91 Tomalia, D.A. and Khanna, S.N. (2016). A systematic framework and nanoperiodic concept for unifying nanoscience: hard/soft nanoelements, superatoms, meta‐atoms, new emerging properties, periodic property patterns, and predictive mendeleev‐like nanoperiodic tables. Chem. Rev. 116: 2705–2774.

92 92 Gillespie, R.J. (1979). Nyholm memorial lecture. Ring, cage, and cluster compounds of the main group elements. Chem. Soc. Rev. 8: 315–352.

93 93 Holm, R.H. (1981). Centenary lecture. Metal clusters in biology: quest for a synthetic representation of the catalytic site of nitrogenase. Chem. Soc. Rev. 10: 455–490.

94 94 Greenwood, N.N. (1984). Liversidge lecture. Molecular tectonics: the construction of polyhedral clusters. Chem. Soc. Rev. 13: 353–374.

95 95 Mingos, D.M.P. (1986). Bonding in molecular clusters and their relationship to bulk metals. Chem. Soc. Rev. 15: 31–61.

96 96 Coolbaugh, M.T. and Garvey, J.F. (1992). Magic numbers in molecular clusters: a probe for chemical reactivity. Chem. Soc. Rev. 21: 163–169.

97 97 Imhof, D. and Venazi, L.M. (1994). Trimetallic units as building blocks in cluster chemistry. Chem. Soc. Rev. 23: 185–193.

98 98 Housecroft, C.E. (1995). Denuding the boron atom of B‐H interactions in transition metal‐boron clusters. Chem. Soc. Rev. 24: 215–222.

99 99 Gatteschi, D., Caneschi, A., Sessoli, R., and Cornia, A. (1996). Magnetism of large iron‐oxo clusters. Chem. Soc. Rev. 25: 101–109.

100 100 Schnepf, A. (2007). Metalloid group 14 cluster compounds: an introduction and perspectives to this novel group of cluster compounds. Chem. Soc. Rev. 36: 745–758.

101 101 Hakkinen, H. (2008). Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. Chem. Soc. Rev. 37: 1847–1859.

102 102 Schmid, G. (2008). The relevance of shape and size of Au55 clusters. Chem. Soc. Rev. 37: 1909–1930.

103 103 Verlet, J.R.R. (2008). Femtosecond spectroscopy of cluster anions: insights into condensed‐phase phenomena from the gas‐phase. Chem. Soc. Rev. 37: 505–517.

104 104 Fischer, I. (2003). Time‐resolved photoionization of radicals, clusters and biomolecules: relevant model systems. Chem. Soc. Rev. 32: 59–69.

105 105 Kostakis, G.E., Ako, A.M., and Powell, A.K. (2010). Structural motifs and topological representation of Mn coordination clusters. Chem. Soc. Rev. 39: 2238–2271.

106 106 Schubert, U. (2011). Cluster‐based inorganic‐organic hybrid materials. Chem. Soc. Rev. 40: 575–582.

107 107 Long, D.‐L., Burkholder, E., and Cronin, L. (2007). Polyoxometalate clusters, nanostructures and materials: from self‐assembly to designer materials and devices. Chem. Soc. Rev. 36: 105–121.

108 108 Rozes, L. and Sanchez, C. (2011). Titanium oxo‐clusters: precursors for a Lego‐like construction of nanostructured hybrid materials. Chem. Soc. Rev. 40: 1006–1030.

109 109 Cabeza, J.A. and Garcia‐Alvarez, P. (2011). The N‐heterocyclic carbene chemistry of transition‐metal carbonyl clusters. Chem. Soc. Rev. 40: 5389–5405.

110 110 Sculfort, S. and Braunstein, P. (2011). Intramolecular d10‐d10 interactions in heterometallic clusters of the transition metals. Chem. Soc. Rev. 40: 2741–2760.

111 111 Lu, Z. and Yin, Y. (2012). Colloidal nanoparticle clusters: functional materials by design. Chem. Soc. Rev. 41: 6874–6887.

112 112 Lu, Y. and Chen, W. (2012). Sub‐nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 41: 3594–3623.

113 113 Olid, D., Nunez, R., Vinas, C., and Teixidor, F. (2013). Methods to produce B‐C, B‐P, B‐N and B‐S bonds in boron clusters. Chem. Soc. Rev. 42: 3318–3336.

114 114 Fuhr, O., Dehnen, S., and Fenske, D. (2013). Chalcogenide clusters of copper and silver from silylated chalcogenide sources. Chem. Soc. Rev. 42: 1871–1906.

115 115 Sterenberg, B.T., Scoles, L., and Carty, A.J. (2002). Synthesis, structure, bonding and reactivity in clusters of the lower phosphorus oxides. Coord. Chem. Rev. 231: 183–197.

116 116 LaViolette, R.A. and Benson, M.T. (2012). Structure and thermodynamics of phosphorus oxide caged clusters. J. Struct. Chem. 53: 48–54.

117 117 Sokolov, M.N. and Fedin, V.P. (2004). Chalcogenide clusters of vanadium, niobium and tantalum. Coord. Chem. Rev. 248: 925–944.

118 118 Thompson, L.K., Waldmann, O., and Xu, Z. (2005). Polynuclear manganese grids and clusters—a magnetic perspective. Coord. Chem. Rev. 249: 2677–2690.

119 119 Alexandrova, A.N., Boldyrev, A.I., Zhai, H.‐J., and Wang, L.‐S. (2006). Allboron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coord. Chem. Rev. 250: 2811–2866.

120 120 Armelao, L., Barreca, D., Bottaro, G. et al. (2006). Recent trends on nanocomposites based on Cu, Ag and Au clusters: a closer look. Coord. Chem. Rev. 250: 1294–1314.

121 121 Huang, Y.‐G., Jiang, F.‐L., and Hong, M.‐C. (2009). Magnetic lanthanide−transition‐metal organic−inorganic hybrid materials: from discrete clusters to extended frameworks. Coord. Chem. Rev. 253: 2814–2834.

122 122 Llusar, R. and Vicent, C. (2010). Trinuclear molybdenum cluster sulfides coordinated to dithiolene ligands and their use in the development of molecular conductors. Coord. Chem. Rev. 254: 1534–1548.

123 123 Glover, S.D., Goeltz, J.C., Lear, B.J., and Kubiak, C.P. (2010). Inter‐ or intramolecular electron transfer between triruthenium clusters: we’ll cross that bridge when we come to it. Coord. Chem. Rev. 254: 331–345.

124 124 Shieh, M., Miu, C.‐Y., Chu, Y.‐Y., and Lin, C.‐N. (2012). Recent progress in the chemistry of anionic groups 6−8 carbonyl chalcogenide clusters. Coord. Chem. Rev. 256: 637–694.

125 125 Kostakis, G.E., Perlepes, S.P., Blatov, V.A. et al. (2012). High‐nuclearity cobalt coordination clusters: synthetic, topological and magnetic aspects. Coord. Chem. Rev. 256: 1246–1278.

126 126 Mayasree, O., Sankar, C.R., Kleinke, K.M., and Kleinke, H. (2012). Cu clusters and chalcogenchalcogen bonds in various copper polychalcogenides. Coord. Chem. Rev. 256: 1377–1383.

127 127 Sokolov, M.N. and Abramov, P.A. (2012). Chalcogenide clusters of Groups 8−10 noble metals. Coord. Chem. Rev. 256: 1972–1991.

128 128 Hong, K. and Chun, H. (2013). Nonporous titanium−oxo molecular clusters that reversibly and selectively adsorb carbon dioxide. Inorg. Chem. 52: 9705–9707.

129 129 Brack, M. (1993). The physics of simple metal clusters: self‐consistent jellium model and semiclassical approaches. Rev. Mod. Phys. 65: 677–732.

130 130 de Heer, W.A. (1993). The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 65: 611–676.

131 131 Jensen, P. (1999). Growth of nanostructures by cluster deposition: Experiments and simple models. Rev. Mod. Phys. 71: 1695–1735.

132 132 Herschbach, D. (1999). Chemical physics: molecular clouds, clusters, and corrals. Rev. Mod. Phys. 71: S411–S418.

133 133 Maier, T., Jarrell, M., Pruschke, T., and Hettler, M.H. (2005). Quantum cluster theories. Rev. Mod. Phys. 77: 1027–1080.

134 134 Fennel, T., Meiwes‐Broer, K.H., Tiggesbäumker, J. et al. (2010). Laser‐driven nonlinear cluster dynamics. Rev. Mod. Phys. 82: 1793–1842.

135 135 Einax, M., Dieterich, W., and Maass, P. (2013). Colloquium: cluster growth on surfaces: densities, size distributions, and morphologies. Rev. Mod. Phys. 85: 921–939.

136 136 Furrer, A. and Waldmann, O. (2013). Magnetic cluster excitations. Rev. Mod. Phys. 85: 367–420.

137 137 Khanna, S.N. and Jena, P. (1992). Assembling crystals from clusters. Phys. Rev. Lett. 69: 1664–1667.

138 138 Khanna, S.N. and Jena, P. (1995). Atomic clusters: building blocks for a class of solids. Phys. Rev. B 51: 13705–13716.

139 139 Knight, W.D., Clemenger, K., de Heer, W.A. et al. (1984). Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett. 52: 2141–2144.

140 140 Jena, P. (2013). Beyond the periodic table of elements: the role of superatoms. J. Phys. Chem. Lett. 4: 1432.

141 141 Leuchtner, R.E., Harms, A.C., and Castleman, A.W. Jr. (1989). Thermal metal cluster anion reactions: behavior of aluminum clusters with oxygen. J. Chem. Phys. 91: 2753.

142 142 Li, X., Wu, H., Wang, X.B., and Wang, L.S. (1998). s−p Hybridization and electron shell structures in aluminum clusters: a photoelectron spectroscopic study. Phys. Rev. Lett. 81: 1909–1912.

143 143 Rao, B.K. and Jena, P. (1999). Evolution of the electronic structure and properties of neutral and charged aluminum clusters: a comprehensive analysis. J. Chem. Phys. 111: 1890.

144 144 Khanna, S.N. and Jena, P. (1994). Designing ionic solids from metallic clusters. Chem. Phys. Lett. 219: 479–483.

145 145 Zheng, W.‐J., Thomas, O.C., Lippa, T.P. et al. (2006). The ionic KAl13 molecule: a stepping stone to cluster assembled materials. J. Chem. Phys. 124: 144304–144305.

146 146 Gutsev, G.L. and Boldyrev, A.I. (1981). DVM‐Xα calculations on the ionization potentials of MXk+1−complex anions and the electron affinities of MXk+1 “superhalogens”. Chem. Phys. 56: 277–283.

147 147 Jena, P. and Sun, Q. (2018). Super atomic clusters: design rules and potential for building blocks of materials. Chem. Rev. 118: 5755–5870.

148 148 Saito, S. and Ohnishi, S. (1987). Stable (Na19)2 as a giant alkali‐metal‐ atom dimer. Phys. Rev. Lett. 59: 190–193.

149 149 Hakkinen, H. and Manninen, M. (1996). How “magic” is a magic cluster? Phys. Rev. Lett. 76: 1599–1602.

150 150 Bergeron, D.E., Castleman, A.W. Jr., Morisato, T., and Khanna, S.N. (2004). Formation of Al13I−: evidence for the superhalogen character of Al13. Science 304: 84–87.

151 151 Kumar, V. and Kawazoe, Y. (2003). Metal‐doped magic clusters of Si, Ge, and Sn: The finding of a magnetic superatom. Appl. Phys. Lett. 83: 2677.

152 152 Rao, B.K., Jena, P., and Manninen, M. (1985). Relationship between topological and magnetic order in small metal clusters. Phys. Rev. B 32: 477.

153 153 Nayak, S.K. and Jena, P. (1998). Anomalous magnetism of small Mn clusters. Chem. Phys. Lett. 289: 473.

Superatoms

Подняться наверх