Читать книгу Superatoms - Группа авторов - Страница 2

Table of Contents

Оглавление

Cover

Title Page

Copyright Page

Preface

List of Contributors

1 Introduction References

2 Rational Design of Superatoms Using Electron‐Counting Rules 2.1 Introduction 2.2 Electron‐Counting Rules 2.3 Stabilizing Negative Ions Using Multiple Electron‐Counting Rules 2.4 Conclusions References

3 Superhalogens – Enormously Strong Electron Acceptors 3.1 Superhalogen Concept 3.2 Alternative Superhalogens 3.3 Polynuclear Systems and the Search for EA and VDE Limits 3.4 Superhalogens' Applications at a Glance 3.5 Final Remarks Acknowledgements References

4 Endohedrally Doped Superatoms and Assemblies 4.1 Introduction 4.2 Magic Clusters and Their Electronic Stability 4.3 Discovery of Silicon Fullerenes and Other Polyhedral Forms 4.4 Endohedral Superatoms of Ge, Sn, and Pb 4.5 Magnetic Superatoms 4.6 Endohedral Clusters of Group 11 Elements 4.7 Endohedral Clusters of B, Al, and Ga 4.8 Hydrogenated Silicon Fullerenes 4.9 Compound Superatoms and Other Systems 4.10 Assemblies of Superatoms 4.11 Concluding Remarks Acknowledgements References

10  5 Magnetic Superatoms 5.1 Introduction 5.2 The Arrival of the Magnetic Superatom 5.3 Tunable Superatoms 5.4 The Delocalisation of d‐electrons 5.5 Prospects for Nanostructured Magnetic Material Design References

11  6 Atomically Precise Synthesis of Chemically Modified Superatoms 6.1 Introduction 6.2 Electronic Structures of Chemically Modified Superatoms 6.3 Atomically Precise Synthesis of Chemically Modified Superatoms 6.4 Summary References

12  7 Atomically Precise Noble Metals in the Nanoscale, Stabilized by Ligands 7.1 Introduction 7.2 Fundamentals 7.3 Applications 7.4 Summary and Outlook References

13  8 Superatoms as Building Blocks of 2D Materials 8.1 Introduction 8.2 Fullerene‐assembled 2D Materials 8.3 Si‐based Cluster Assembled 2D Materials 8.4 Binary Semiconductor Cluster Assembled 2D Materials 8.5 Simple and Noble Metal Cluster‐assembled 2D Materials 8.6 Zintl‐ion Cluster‐assembled 2D Materials 8.7 Chevrel Cluster‐Assembled 2D Materials 8.8 Summary and Future Perspectives References

14  9 Superatom‐Based Ferroelectrics 9.1 Introduction 9.2 Organic Ferroelectrics 9.3 Hybrid Organic‐Inorganic Perovskites 9.4 Supersalts 9.5 Conclusion References

15  10 Cluster‐based Materials for Energy Harvesting and Storage 10.1 Introduction 10.2 Cluster‐based Materials for Moisture‐resistant Hybrid Perovskite Solar Cells 10.3 Cluster‐based Materials for Optoelectronic Devices 10.4 Cluster‐based Materials for Solid‐state Electrolytes in Li‐ and Na‐ion Batteries 10.5 Cluster‐based Materials for Hydrogen Storage 10.6 Clusters Promoting Unusual Reactions 10.7 Conclusions References

16  11 Thermal and Thermoelectric Properties of Cluster‐based Materials 11.1 Introduction 11.2 Basic Theory 11.3 Low Lattice Thermal Conductivity of Cluster‐based Materials 11.4 Thermoelectric Properties of some Selected Cluster‐based Materials 11.5 Conclusion References

17  12 Clusters for CO2 Activation and Conversion 12.1 Introduction 12.2 Superalkali Catalysts 12.3 Al‐based Clusters for CO2 Capture 12.4 Ligand‐protected Au25 Clusters for CO2 Conversion 12.5 M@Ag24 Clusters for CO2 Conversion 12.6 Cu‐based Clusters for CO2 Conversion 12.7 Metal Encapsulated Silicon Nanocages for CO2 Conversion 12.8 Summary and Perspectives References

18  13 Conclusions and Future Outlook

19  Index

20  End User License Agreement

Superatoms

Подняться наверх