Читать книгу Advanced Healthcare Systems - Группа авторов - Страница 32

2.1 Introduction

Оглавление

IoT (Internet of Things) is very trending system consists of a variety of sensors, networking devices, microcomputer or microprocessor, optimized software, and different objects. To exchange data among each other, IoT devices, computers servers, and even cloud for data processing Apat et al. [24]. The demand of IoT devices is increasing day by day, and this will create a large opportunity for the IoT industry and researchers. Figure 2.1 illustrates healthcare using IoT. From the last few years, the sensor industry has evolved from making tiny sensors like photodetectors, temperature sensors, and hall sensors to more advanced sensors like blood glucose sensor, oxygen saturation level sensor, and ECG. With integration of fog computing and cloud, it facilitates the disease prediction of certain kinds and can get future insights of different diseases. The IoT system comprises various things like wearable IoT sensors, adaptive network interfaces, and optimized software integration module to cloud. Sensors are used to collect health-related data of sick patient with devices like oximeter for measuring oxygen saturation percentage in blood, blood pressure meter for measuring systolic blood pressure as well as diastolic blood pressure in arteries, blood glucose meter for measuring concentration of blood glucose using tiny drop of blood taken from human body, weight sensor for periodic measurement of patient weight for further analysis, and temperature sensor for monitoring real-time body temperature data.

Fall detection sensor for detection of accidental fall is using accelerometer and gyroscope and more advanced sensors like ECG for measuring electrical heart activity at rest. Adaptive networking interface provides support for a large number of networking protocols to easily integrate with different networking devices and software with enhanced algorithms to process health-related data efficiently and accurately Multag et al. [25]. There are a number of other uses of IoT devices. There are, like in fitness, a variety of fitness trackers available in the market for measuring daily activity like heart rate, sleep time, and running and walking time and also provide an interface for calling and messaging from right to the wrist. Companies offering these types of devices are Apple, Samsung, Fitbit, Xiaomi, etc. Next use of IoT devices is in smart homes, where the smart home Ghosh et al. [31], consists of a variety of a smart sensors like smart lock for keyless entry in car and homes, photo-director for turning garden light on at night and off at the day, sensor for detecting movement in room and triggering alarm when an intrusion happens, wireless camera with internet access to remotely monitor home and other premises, smart thermostat for controlling temperature according to human need, and smart fire alarm system for triggering alarm when a thing catches fire; IoT sensors can also be used in smart traffic management system for monitoring vehicle tracking on roads and switching traffic light according to traffic need. IoT sensors can also be used in warehouses for tracking workers activities. The increasing demand of smart devices in various fields creates huge amount of data and these data falls under various risk and challenges, if does not handled properly (especially health-related data). Patient data generated by smart heath sensors are very sensitive and critical, and management of these data is quite challenging Alihamidi et al. [32]. Every healthcare system must be provided security mechanism to handle five major factors in data handling: availability, integrity, confidentiality, authentication, and non-repudiation.


Figure 2.1 Healthcare using IoT.

Advanced Healthcare Systems

Подняться наверх