Читать книгу Genotyping by Sequencing for Crop Improvement - Группа авторов - Страница 57

References

Оглавление

1 Baird, N.A., Etter, P.D., Atwood, T.S. et al. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3 (10): e3376.

2 Baner, J., Nilsson, M., Mendel‐Hartvig, M. et al. (1998). Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Research 26 (22): 5073–5078.

3 Bayer, M.M., Rapazote‐Flores, P., Ganal, M. et al. (2017). Development and evaluation of a barley 50k iSelect SNP array. Frontiers in Plant Science 8: 1792.

4 Bianco, L., Cestaro, A., Linsmith, G. et al. (2016). Development and validation of the Axiom® Apple480K SNP genotyping array. Plant Journal 86: 62–74. https://doi.org/10.1111/tpj.13145.

5 Branton, D., Deamer, D.W., Marziali, A. et al. (2010). The potential and challenges of nanopore sequencing. Nanoscience and Technology: A Collection of Reviews from Nature Journals: 261–268.

6 Chagné, D., Crowhurst, R.N., Troggio, M. et al. (2012). Genome‐wide SNP detection, validation, and development of an 8K SNP array for apple. PLoS One 7: e31745. https://doi.org/10.1371/journal.pone.0031745.

7 Chan, M., Chan, M.W., Loh, T.W. et al. (2011). Evaluation of nanofluidics technology for highthroughput SNP genotyping in a clinical setting. The Journal of Molecular Diagnostics 13 (3): 305–312. https://doi.org/10.1016/j.jmoldx.2010.12.001.

8 Chen, X., Levine, L., and Kwok, P.Y. (1999). Fluorescence polarization in homogeneous nucleic acid analysis. Genome Research 9 (5): 492–498.

9 Eid, J., Fehr, A., Gray, J. et al. (2009). Real‐time DNA sequencing from single polymerase molecules. Science 323 (5910): 133–138.

10 Elshire, R.J., Glaubitz, J.C., Sun, Q. et al. (2011). A robust, simple genotyping‐by‐sequencing (GBS) approach for high diversity species. PLoS One 6 (5): e19379.

11 Gravel, S., Henn, B.M., Gutenkunst, R.N. et al. (2011). Demographic history and rare allele sharing among human populations. Proceedings. National Academy of Sciences. United States of America 108: 11983–11988. https://doi.org/10.1073/pnas.1019276108.

12 Kennedy, G.C., Matsuzaki, H., Dong, S. et al. (2003). Large‐scale genotyping of complex DNA. Nature Biotechnology 21: 10.

13 Khlestkin, V.K., Rozanova, I.V., Efimov, V.M. et al. (2019). Starch phosphorylation associated SNPs found by genome‐wide association studies in the potato (Solanum tuberosum L.). BMC Genetics 20 (1): 45–53.

14 Kishora, D.S., Songa, W.‐H., Noha, Y. et al. (2020). Development of SNP markers and validation assays in commercial Korean melon cultivars, using genotyping‐by‐sequencing and Fluidigm analyses. Scientia Horticulturae 263: 109113.

15 Kumar, N.M., Katageri, I.S., Gowda, S.A. et al. (2019). 63K SNP chip based linkage mapping and QTL analysis for fibre quality and yield component traits in Gossypium barbadense L. cotton. Euphytica 215 (1): 1–16.

16 LaFramboise, T. (2009). Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Research 37 (13): 4181–4193.

17 Li, Y., Haseneyer, G., Schön, C.C. et al. (2011). High levels of nucleotide diversity and fast decline of linkage disequilibrium in rye (Secale cereale L.) genes involved in frost response. BMC Plant Biology 11: 6.

18 Li, X., Singh, J., Qin, M. et al. (2019). Development of an integrated 200K SNP genotyping array and application for genetic mapping, genome assembly improvement and genome wide association studies in pear (Pyrus). Plant Biotechnology Journal 17 (8): 1582–1594.

19 Livak, K.J. (1999). Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genetic Analysis ‐ Biomolecular Engineering 14 (5‐6): 143–149.

20 Lyamichev, V., Mast, A.L., Hall, J.G. et al. (1999). Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nature Biotechnology 17 (3): 292–296.

21 Marrano, A., Martínez‐García, P.J., Bianco, L. et al. (2019). A new genomic tool for walnut (Juglans regia L.): development and validation of the high‐density Axiom™ J. regia 700K SNP genotyping array. Plant Biotechnology Journal 17 (6): 1027–1036.

22 Matsuzaki, H., Dong, S., Loi, H. et al. (2004). Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays. Nature Biotechnology 21: 10.

23 McCouch, S.R., Wright, M.H., Tung, C.W. et al. (2016). Open access resources for genome‐wide association mapping in rice. Nature Communications 7 (1): 1–14.

24 McCouch, S.R., Wright, M.H., Tung, C.‐W. et al. (2017). Open access resources for genome‐wide association mapping in rice. Nature Communications 7: 10532. https://doi.org/10.1038/ncomms10532.

25 McCoy, R.C., Taylor, R.W., Blauwkamp, T.A. et al. (2014). Illumina TruSeq synthetic long‐reads empower de novo assembly and resolve complex, highly‐repetitive transposable elements. PLoS One 9 (9): e106689.

26 Montanari, S., Bianco, L., Allen, B.J. et al. (2019). Development of a highly efficient Axiom™ 70 K SNP array for Pyrus and evaluation for high‐density mapping and germplasm characterization. BMC Genomics 20 (1): 1–18.

27 Nilsson, M., Malmgren, H., Samiotaki, M. et al. (1994). Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265 (5181): 2085–2088.

28 Oath, P., del Mistro, G., Marnellos, G. et al. (2009). Single Nucleotide Polymorphisms, Methods in Molecular Biology, vol. 578 (ed. A.A. Komar). Totowa: Humana Press Inc. https://doi.org/10.1007/978‐1‐60327‐411‐1_20.

29 Peace, C., Bassil, N., Main, D. et al. (2012). Development and evaluation of a genome‐wide 6K SNP array for diploid sweet cherry and tetraploid sour cherry. PLoS One 7 (12): e48305.

30 Peng, Z., Fan, W., Wang, L. et al. (2017). Target enrichment sequencing in cultivated peanut (Arachis hypogaea L.) using probes designed from transcript sequences. Molecular Genetics and Genomics 292: 955–965. https://doi.org/10.1007/s00438‐017‐1327‐z.

31 Perea, C., De La Hoz, J.F., Cruz, D.F. et al. (2016). Bioinformatic analysis of genotype by sequencing (GBS) data with NGSEP. BMC Genomics 17: 498. https://doi.org/10.1186/s12864‐016‐2827‐7.

32 Piriyapongsa, J., Kaewprommal, P., Vaiwsri, S. et al. (2018). Uncovering full‐length transcript isoforms of sugarcane cultivar Khon Kaen 3 using single‐molecule long‐read sequencing. PeerJ 6: e5818.

33 Seeb, J.E., Pascal, C.E., Ramakrishnan, R. et al. (2009). Single Nucleotide Polymorphisms, Methods in Molecular Biology, vol. 578 (ed. A.A. Komar). Totowa: Humana Press Inc. https://doi.org/10.1007/978‐1‐60327‐411‐1_18.

34 Singh, N., Jayaswal, P.K., Panda, K. et al. (2015). Single‐copy gene based 50 K SNP chip for genetic studies and molecular breeding in rice. Scientific Reports 5 (1): 1–9.

35 Singh, S., Mahato, A.K., Jayaswal, P.K. et al. (2020). A 62K genic‐SNP chip array for genetic studies and breeding applications in pigeonpea (Cajanus cajan L. Millsp). Scientific Reports 10 (1): 1–14.

36 Singhal, N., Kumar, M., Kanaujia, P.K. et al. (2015). MALDI‐TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Frontiers in Microbiology 6: 791. https://doi.org/10.3389/fmicb.2015.00791.

37 Thelwell, N., Millington, S., Solinas, A. et al. (2000). Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Research 28 (19): 3752–3761.

38 Thomson, M.J., Singh, N., Dwiyanti, M.S. et al. (2017). Large‐scale deployment of a rice 6 K SNP array for genetics and breeding applications. Rice 10 (1): 1–13.

39 Unger, M.A., Chou, H.‐P., Thorsen, T. et al. (2000). Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288: 113–116.

40 Unterseer, S., Bauer, E., Haberer, G. et al. (2014). A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array. BMC Genomics 15 (1): 1–15.

41 Vos, P.G., Uitdewilligen, J.G., Voorrips, R.E. et al. (2015). Development and analysis of a 20K SNP array for potato (Solanum tuberosum): an insight into the breeding history. Theoretical and Applied Genetics 128: 2387–2401. https://doi.org/10.1007/s00122‐015‐2593‐y.

42 Wang, S., Wong, D., Forrest, K. et al. (2014). International Wheat Genome Sequencing Consortium. Characterization of polyploid wheat genomic diversity using a high‐density 90 000 single nucleotide polymorphism array. Plant Biotechnology Journal 12: 787–796.

43 Whitcombe, D., Theaker, J., Guy, S.P. et al. (1999). Detection of PCR products using self‐probing amplicons and fluorescence. Nature Biotechnology 17 (8): 804–807.

44 Wickland, D.P., Battu, G., Hudson, K.A. et al. (2017). A comparison of genotyping‐by‐sequencing analysis methods on low‐coverage crop datasets shows advantages of a new workflow, GB‐eaSy. BMC Bioinformatics 18 (1): 586. https://doi.org/10.1186/s12859‐017‐2000‐6.

45 Winfield, M.O., Allen, A.M., Burridge, A.J. et al. (2016). High‐density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnology Journal 14 (5): 1195–1206.

46 Zhang, P., Li, X., Gebrewahid, T.W. et al. (2019). QTL mapping of adult‐plant resistance to leaf and stripe rust in wheat cross SW 8588/Thatcher using the wheat 55K SNP array. Plant Disease 103 (12): 3041–3049.

47 Zhao, K., Tung, C.W., Eizenga, G.C. et al. (2011). Genome‐wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications 2 (1): 1–10.

Genotyping by Sequencing for Crop Improvement

Подняться наверх