Читать книгу Smart Systems for Industrial Applications - Группа авторов - Страница 39

References

Оглавление

1. Gaddi, A., Capello, F., Manca, M., eHealthcare and Quality of Life, Springer, Verlag Italia, 2014.

2. Oh, H., Rizo, C., Enkin, M., Jadad, A., What is ehealth (3): a systematic review of published definitions. J. Med. Internet Res., 7, 1, e1, 2005.

3. Gurung, M.S., Dorji, G., Khetrapal, S., Ra, S., Babu, G.R., and S Krishnamurthy, R.S., Transforming healthcare through Bhutan’s digital health strategy: progress to date. WHO South-East Asia Journal of Public Health, pp. 77–82, doi: 10.4103/2224-3151.264850.

4. Zulman, D.M., Jenchura, E.C., Cohen, D.M., Lewis, E.T., Houston, T.K., Asch, S.M., How Can eHealth Technology Address Challenges Related to Multimorbidity Perspectives from Patients with Multiple Chronic Conditions. J. Gen. Intern. Med., 30, 8, 1063–70, 2015.

5. Laxminarayan, S. and Istepanian, R.S.H., Unwired e-med: the next generation of wireless and internet telemedicine systems. IEEE Trans. Inf. Technol. Biomed., 4, 3, 189–193, Sept 2000, https://doi.org/10.1109/TITB.2000.5956074.

6. Germanakos, P., Mourlas, C., Samaras, G., A mobile agent approach for ubiquitous and personalized ehealth information systems, in: Proceedings of the Workshop on ‘Personalization for e-Health’ of the 10th International Conference on User Modeling (UM’05), Edinburgh, pp. 67–70, 2005.

7. Lee, J., Smart health: concepts and status of ubiquitous health with smartphones, in: ICTC 2011, pp. 388–389, Sept 2011, https://doi.org/10.1109/ICTC.2011.6082623.

8. Wu, G., Talwar, S., Johnsson, K., Himayat, N., Johnson, K.D., M2M: from mobile to embedded internet. IEEE Commun. Mag., 49, 4, 36–43, April 2011, https://doi.org/10.1109/MCOM.2011.5741144.

9. Jennifer Bresnick, J., Top 12 Ways Artificial Intelligence Will Impact Healthcare, World medical Innovation Forum, 2018, accessed 30 April 2018, https://healthitanalytics.com/news/top-12-ways-artificial-intelligence-will-impact-healthcare.

10. Micah Castelo, M., The Future of Artificial Intelligence in Healthcare, Healthtech Magazine, 2020, accessed 26 Feb 2020, https://healthtechmagazine.net/article/2020/02/future-artificial-intelligence-healthcare.

11. Sandeep Reddy (November 5th 2018). Use of Artificial Intelligence in Healthcare Delivery, eHealth - Making Healthcare Smarter, Thomas F. Heston, IntechOpen, DOI: 10.5772/intechopen.74714. Available from: https://www.intechopen.com/books/ehealth-making-health-care-smarter/use-of-artificial-intelligence-in-healthcare-delivery.

12. Murdoch, T.B. and Detsky, A.S., The inevitable application of big data to healthcare. JAMA, 309, 1351–2, 2013.

13. Kolker, E., Özdemir, V., Kolker, E., How Healthcare can refocus on its Super-Customers (Patients, n=1) and Customers (Doctors and Nurses) by Leveraging Lessons from Amazon, Uber, and Watson. OMICS, 20, 329–33, 2016.

14. Dilsizian, S.E. and Siegel, E.L., Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Curr. Cardiol. Rep., 16, 441, 2014.

15. Bhavnani, S.P., Narula, J., Sengupta, P.P., Mobile technology and the digitization of healthcare. Eur. Heart J., 37, 1428–1438, 2016, https://doi.org/10.1093/eurheartj/ehv770.

16. Tison, G.H., Sanchez, J.M., Ballinger, B., Singh, A., Olgin, J.E., Pletcher, M.J., Vittinghoff, E., Lee, E.S., Fan, S.M., Gladstone, R.A. et al., Passive detection of atrial fibrillation using a commercially available smartwatch. JAMA Cardiol., 3, 409–416, 2018, https://doi.org/10.1001/jamacardio.2018.0136.

17. Sengupta, P.P., Huang, Y.M., Bansal, M., Ashrafi, A., Fisher, M., Shameer, K., Gall, W., Dudley, J.T., Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ. Cardiovasc. Imaging, 9, e004330, 2016, https://doi.org/10.1161/CIRCIMAGING.115.004330.

18. Tsang, W., Salgo, I.S., Medvedofsky, D., Takeuchi, M., Prater, D., Weinert, L., Yamat, M., Mor-Avi, V., Patel, A.R., Lang, R.M., Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm. JACC: Cardiovasc. Imaging, 9, 769–782, 2016, https://doi.org/10.1016/j.jcmg.2015.12.020.

19. Lancaster, M.C., Salem Omar, A.M., Narula, S., Kulkarni, H., Narula, J., Sengupta, P.P., Phenotypic clustering of left ventricular diastolic function parameters: patterns and prognostic relevance. JACC: Cardiovasc. Imaging, 12, 7, 1149–1161, 2018, https://doi.org/10.1016/j.jcmg.2018.02.005. [epub].

20. Zhang, J., Gajjala, S., Agrawal, P., Tison, G.H., Hallock, L.A., Beussink-Nelson, L., Lassen, M.H., Fan, E., Aras, M.A., Jordan, C. et al., Fully automated echo-cardiogram interpretation in clinical practice. Circulation, 138, 1623–1635, 2018, (https://doi.org/10.1161/CIRCULATIONAHA.118.034338).

21. Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., Jamalipour, A., Wireless Body Area Networks: A Survey. IEEE Commun. Surv. Tutor., 16, 3, 1658–1686, 2014.

22. Rodrigues, J.J.P.C. et al., Enabling Technologies for the Internet of Health Things. IEEE Access, 6, 13129–13141, 2018.

23. Ooi, P., Culjak, G., Lawrence, E., Wireless and wearable overview: stages of growth theory in medical technology applications. International Conference on Mobile Business (ICMB’05), IEEE, 2005.

24. Khalid, H. et al., A comprehensive review of wireless body area network. J. Netw. Comput. Appl., 143, 178–198, 2019.

25. Al-Janabi, S. et al., Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications. Egypt. Inform. J., 18, 2, 113–122, July 2017.

26. Sangita Singh, S., Artificial Intelligence and the Internet of Things in Healthcare, Healthcare and Life Sciences, 2018, accessed 6 April 2018, https://thejournalofmhealth.com/artificial-intelligence-and-the-internet-of-thingsin-healthcare.

27. Azimi, I. et al., HiCH: Hierarchical Fog-Assisted Computing Architecture for Healthcare IoT. ACM Trans. Embed. Comput. Syst., 16, 5s, 1–20, Sept. 2017.

28. Baskar, S., A dynamic and interoperable communication framework for controlling the operations of wearable sensors in smart healthcare applications. Comput. Commun., 149, 17–26, Jan. 2020.

29. Deepak, B.D., Al-Turjman, F., Aloqaily, M., Alfandi, O., An Authentic-Based Privacy Preservation Protocol for Smart e-Healthcare Systems in IoT. IEEE Access, 7, 135632–135649, 2019.

30. Bejnordi, B.E., Veta, M., van Diest, P.J. et al., Diagnostic Assessment of deep learning algorithms for detection of lymph node metas-tases in women with breast cancer. JAMA, 318, 2199–2210, 2017.

31. Saba, L., Biswas, M., Kuppili, V. et al., The present and future of deep learning in radiology. Eur. J. Radiol., 114, 14–24, 2019.

32. Francis, N.K., Luther, A., Salib, E. et al., The use of artificial neural networks to predict delayed discharge and readmission in enhanced recovery following laparoscopic colorectal cancer surgery. Tech. Coloproctol., 19, 419–428, 2015.

33. Rabbani, M., Kanevsky, J., Kafi, K. et al., Role of artificial intelligence in the care of patients with non small cell lung cancer. Eur. J. Clin. Invest., 48, 1–7, 2018.

34. Obrzut, B., Kusy, M., Semczuk, A. et al., Prediction of 5-year overall survival in cervical cancer patients treated with radical hysterectomy using computational intelligence methods. BMC Cancer, 17, 840, 2017.

35. Murugesan, Y.P., Alsadoon, A., Manoranjan, P., Prasad, P.W.C., A novel rotational matrix and translation vector algorithm: geometric accuracy for augmented reality in oral and maxillofacial surgeries. Int. J. Med. Robot., 14, e1889, 2018.

36. Bourdel, N., Collins, T., Pizarro, D. et al., Augmented reality in gynecologic surgery: evaluation of potential benefits for myomectomy in an experimental uterine model. Surg. Endosc., 31, 456–461, 2017.

37. Mendivil, A.A., Abaid, L.N., Brown, J.V. et al., The safety and feasibility of minimally invasive sentinel lymph node staging using indocyanine green in the manage-ment of endometrial cancer. Eur. J. Obstet. Gynecol. Reprod. Biol., 224, 29–32, 2018.

38. Waran, V., Narayanan, V., Karuppiah, R. et al., Utility of multi material 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons. J. Neurosurg., 120, 489–492, 2014.

1 *Corresponding author: vijayakp@srmist.edu.in

Smart Systems for Industrial Applications

Подняться наверх