Читать книгу Smart Systems for Industrial Applications - Группа авторов - Страница 41
2
Pneumatic Position Servo System Using Multi-Variable Multi-Objective Genetic Algorithm–Based Fractional-Order PID Controller
ОглавлениеD.Magdalin Mary1*, V.Vanitha2 and G.Sophia Jasmine1
1 Department of Electrical and Electronics Engineering Sri Krishna College of Technology, Coimbatore, Tamilnadu, India 2 Department of Electrical and Electronics Engineering, VSB College of Engineering Technical Campus, Coimbatore, Tamilnadu, India
Abstract
In the last few decades, pneumatic servo systems are gaining popularity in numerous industrial applications because of numerous benefits such as high power to volume ratio, high rapidity, less economic, and easy maintenance plus long life. Servo pneumatic positioning systems have proven to be more cost effective than hydraulic systems because of the availability of air in abundance. In the pneumatic system, mid-air pump is consumed to supply the compressed air by regulating the proportional valve slots and drive the piston connected to the payload. Proportional integral differential (PID) controller is able to compensate the nonlinearity, and its performance becomes unsatisfactory when the system conditions change. The fractional-order PID (FOPID) controllers are robust and accurate than conventional PID controllers as they have two additional parameters for tuning. In this work, the fractional order of pneumatic servo system is used in the model of air pump and FOPID is propositioned to control the position of valve. The way to progress its performance, the controller parameters are optimized using genetic algorithm (GA). Proposed algorithm is validated for different reference positions and various values of evolution parameters define the system performances and give the optimized solutions in all aspects.
Keywords: Pneumatic position servo system, FOPID, GA, MATLAB, PIC microcontroller