Читать книгу X-Ray Fluorescence in Biological Sciences - Группа авторов - Страница 53

References

Оглавление

1 1 Smichowski, P. and Londonio, A. (2018). The role of analytical techniques in the determination of metals and metalloids in dietary supplements: a review. Microchem. J. 136: 113–120.

2 2 Revenko, A.G. (2014). X‐ray fluorescence analysis of food products: its present and future [abstract]. In: Eur. Conf. on X‐Ray Spectrom., 82. Bologna, Italy.

3 3 Taylor, A., Barlow, N., Day, M.P. et al. (2019). Atomic spectrometry update: review of advances in the analysis of clinical and biological materials, foods and beverages. J. Anal. At. Spectrom 34 (3): 426–459.

4 4 Taylor, A., Catchpole, A., Day, M.P. et al. (2020). Atomic spectrometry update: review of advances in the analysis of clinical and biological materials, foods and beverages. J. Anal. At. Spectrom 35 (3): 426–454.

5 5 Revenko, A.G. (2000). X‐ray fluorescence analysis of biological samples. Ann. IB Komi SC UB RAS 28 (2): 14–16. (in Russian).

6 6 Revenko, A.G. (2013). X‐Ray fluorescence analysis of biological samples. In: Proceedings of 5th International Conference on Contemporary Physics, 175–197. Ulaanbaatar: University Press.

7 7 Revenko, A.G. and Khudonogova, E.V. (2014). X‐ray fluorescence analysis of food. In: Proc. 8th All‐Russian Conf. on XRF, 107. Russia: Irkutsk (in Russian).

8 8 Sharangi, A.B. (2009). Medicinal and therapeutic potentialities of tea (Camellia sinensis L.) – a review. Food Res. Int. 42: 529–535.

9 9 Iashin, I.I. and Iashin, А.I. (2010). The Chemical Composition of Tea and its Effect in Human Health. Moscow: TransLit Publishing (in Russian).

10 10 Toci, A.T., de Moura Ribeiro, M.V., de Toledo, P.R.A.B. et al. (2018). Fingerprint and authenticity roasted coffees by 1H‐NMR: the Brazilian coffee case. Food Sci. Biotechnol. 27: 19–26.

11 11 Haswell, S.J. and Walmsley, A.D. (1998). Multivariate data visualisation methods based on multi‐elemental analysis of wines and coffees using total reflection X‐ray fluorescence analysis. J. Anal. At. Spectrom 13: 131–134.

12 12 De La Calle, I., Costas, M., Cabaleiro, N. et al. (2013). Fast method for multielemental analysis of plants and discrimination according to the anatomical part by total reflection X‐ray fluorescence spectrometry. Food Chem. 138: 234–241.

13 13 Borgese, L., Bilo, F., Dalipi, R. et al. (2015). Total reflection X‐ray fluorescence as a tool for food screening. Spectrochim. Acta Part B 113 (1): 1–15.

14 14 Pashkova, G.V. and Revenko, A.G. (2015). A review of application of total reflection X‐ray fluorescence spectrometry to water analysis. Appl. Spectrosc. Rev. 50 (6): 443–473.

15 15 Revenko, A.G. and Sharykina, D.S. (2019). The application of X‐ray fluorescence analysis to research the chemical compositions of tea and coffee samples. Anal. Control 23 (1): 6–23. (in Russian).

16 16 Maltsev, A.S., von Bohlen, A., Yusupov, R.A., and Bakhteev, S.A. (2019). Evaluation of analytical capabilities of total reflection X‐ray fluorescence spectrometry for the analysis of drinks with sucrose matrix. Anal. Control 23 (4): 483–493.

17 17 Pashkova, G.V. (2009). X‐ray fluorescence determination of element contents in milk and dairy products. Food Anal. Methods 2: 303–310.

18 18 Pashkova, G.V., Smagunova, A.N., and Finkelshtein, A.L. (2018). X‐ray fluorescence analysis of milk and dairy products: a review. Tr. Anal. Chem. 106: 183–189.

19 19 McLeod, R.J., Garland, M., Hale, R.V. et al. (2013). Determining the most effective combination of chemical parameters for differentiating the geographic origin of food products: an example using coffee beans. J. Food Chem. Nutr. 01 (02): 49–61.

20 20 Marcos, A., Fisher, A., Rea, G., and Hill, S.J. (1998). Preliminary study using trace element concentrations and a chemometrics approach to determine the geographical origin of tea. J. Anal. At. Spectrom 13 (6): 521–525.

21 21 Fernández‐Cáceres, P.L., Martín, M.J., Pablos, F., and González, A.G. (2001). Differentiation of tea (Camellia sinensis) varieties and their geographical origin according to their metal content. J. Agric. Food Chem. 49 (10): 4775–4779.

22 22 Haytowitz, D.B., Pehrsson, P.R., and Holden, J.M. (2002). The identification of key foods for food composition research. J. Food Compos. Anal. 15 (2): 183–194.

23 23 Gonzalvez, A., Armenta, S., and De La Guardia, M. (2009). Trace‐element composition and stable‐isotope ratio for discrimination of foods with protected designation of origin. Tr. Anal. Chem. 28 (11): 1295–1311.

24 24 Armenta, S. and de la Guardia, M. (2016). Analytical approaches for the evaluation of food protected designation of origin. Eds. M. Espineira and F. Santaclara. In: Advances in Food Traceability Techniques and Technologies, 275–301. Woodhead Publishing.

25 25 Kamiloglu, S. (2019). Authenticity and traceability in beverages. Food Chem. 277: 12–24.

26 26 Worku, M., Upadhayay, H.R., and Latruwe, K. (2019). Differentiating the geographical origin of Ethiopian coffee using XRF‐ and ICP‐based multi‐element and stable isotope profiling. Food Chem. 290: 295–307.

27 27 Callao, M.P. and Ruisánchez, I. (2018). An overview of multivariate qualitative methods for food fraud detection. Food Control 86: 283–293.

28 28 Cloete, K.J., Smit, Z., Minnis‐Ndimba, R. et al. (2019). Physico‐elemental analysis of roasted organic coffee beans from Ethiopia, Colombia, Honduras, and Mexico using X‐ray micro‐computed tomography and external beam particle induced X‐ray emission. Food Chem. X 2: 100032.

29 29 Pereira, F.M.V., Pereira‐Filho, E.R., Rodriques, E., and Bueno, M.I.M.S. (2006). Development of a methodology for Ca, Fe, K, Mg, Mn, and Zn quantification in teas using X‐ray spectroscopy and multivariate calibration. J. Agric. Food Chem. 54: 5723–5730.

30 30 Karak, T. and Bhagat, R.M. (2010). Trace elements in tea leaves, made tea and tea infusion: a review. Food Res. Int. 43 (9): 2234–2252.

31 31 Karak, T., Kutu, F.R., Nath, J.R. et al. (2017). Micronutrients (B, Co, Cu, Fe, Mn, Mo, and Zn) content in made tea (Camellia sinensis L.) and tea infusion with health prospect: a critical review. Crit. Rev. Food Sci. Nutr. 57 (14): 2996–3034.

32 32 Kumakhov, M.A. (2000). Capillary optics and their use in x‐ray analysis. X‐Ray Spectrom. 29 (5): 343–348.

33 33 Beckhoff, B., Kanngießer, B., Langhoff, N. et al. (2006). Handbook of Practical X‐Ray Fluorescence Analysis. Springer Science & Business Media.

34 34 Revenko, A.G. (2007). Specific features of X‐ray fluorescence analysis techniques using capillary lenses and synchrotron radiation. Spectrochim. Acta A 62B (6–7): 567–576.

35 35 Yonehara, T., Orita, D., Nakano, K. et al. (2010). Development of a transportable μ‐XRF spectrometer with polycapillary half lens. X‐Ray Spectrom. 39 (2): 78–82.

36 36 Haschke, M. (2014). Laboratory Micro‐X‐Ray Fluorescence Spectroscopy, vol. 55. Springer.

37 37 Szoboszlai, N., Polgári, Z., Mihucz, V.G., and Záray, G. (2009). Recent trends in total reflection X‐ray fluorescence spectrometry for biological applications. Anal. Chim. Acta 633 (1): 1–18.

38 38 Revenko, A.G. (2010). The special features of analytical techniques for geological samples using TXRF spectrometers. Anal. Control 14 (2): 42–64. (in Russian).

39 39 Klockenkämper, R. and von Bohlen, A. (2015). Total‐Reflection X‐Ray Fluorescence Analysis and Related Methods, 2e. New Jersey: Wiley.

40 40 Kawai, J. (2018). Total reflection X‐ray fluorescence. Nark F. Vitha, Series Editor In: Compendium of Surface and Interface Analysis, 763–768. Singapore: Springer.

41 41 Heckel, J., Brumme, M., Weinert, A., and Irmer, K. (1991). Multi‐element trace analysis of rocks and soils by EDXRF using polarized radiation. X‐Ray Spectrom. 20 (6): 287–292.

42 42 Revenko, A.G. (1994). X‐Ray Spectral Fluorescence Analysis of Natural Materials. Novosibirsk: Nauka Publishers (In Russian).

43 43 Margui, E., Padilla, R., Hidalgo et al. (2006). High‐energy polarized‐beam EDXRF for trace metal analysis of vegetation samples in environmental studies. X‐Ray Spectrom. 35 (3): 169–177.

44 44 Hepp, N.M. and James, I.C. (2016). Application of high‐energy polarized energy‐dispersive x‐ray fluorescence spectrometry to the determination of trace levels of As, Hg, and Pb in certifiable color additives. X‐Ray Spectrom. 45 (6): 330–338.

45 45 Palmer, P.T., Jacobs, R., Baker, P.E. et al. (2009). Use of field‐portable XRF analyzers for rapid screening of toxic elements in FDA‐regulated products. J. Agric. Food Chem. 57: 2605–2613.

46 46 Willis, J., Feather, C., and Turner, K. (2014). Guidelines for XRF analysis. Setting up programmes for WDXRF and EDXRF. Cape Town, South Africa: James Willis Consultants cc.

47 47 Fleming, D.E.B., Foran, K.A., Kim, J.S., and Guernsey, J.R. (2015). Portable x‐ray fluorescence for assessing trace elements in rice and rice products: comparison with inductively coupled plasma‐mass spectrometry. Appl. Radiat. Isot. 104: 217–223.

48 48 Towett, E.K., Shepherd, K.D., and Drake, B.L. (2016). Plant elemental composition and portable X‐ray fluorescence (pXRF) spectroscopy: quantification under different analytical parameters. X‐Ray Spectrom. 45 (2): 117–124.

49 49 Ridolfi, S. (2017). Portable Systems for Energy‐Dispersive X‐Ray Fluorescence Analysis. Encyclopedia of Analytical Chemistry. Wiley.

50 50 Revenko, A.G. (1994a). Preparation of samples of natural materials for energy dispersive X‐ray fluorescence analysis. Industrial Lab. Diagn. ‐Mater. 60 (11): 16–29. (in Russian).

51 51 Garivait, S., Quisefit, J.P., de Chateaubourg, P., and Malingre, G. (1997). Multi‐element analysis of plants by WDXRF using the scattered radiation correction method. X‐Ray Spectrom. 26 (5): 257–264.

52 52 Chen, Y., Guo, Z., Wang, X., and Qiu, C. (2008). Sample preparation. Review. J. Chromatogr. A 1184: 191–219.

53 53 Margui, E., Queralt, I., and Van Grieken, R. (2016). Sample preparation for X‐ray fluorescence analysis. R.A. Meyers (Ed.) In: Encyclopedia of Analytical Chemistry. Wiley 25 p.

54 54 Welna, M., Szymczycha‐Madeja, A., and Pohl, P. (2013). A comparison of samples preparation strategies in the multi‐elemental analysis of tea by spectrometric methods. Food Res. Int. 53 (2): 922–930.

55 55 Gunicheva, T.N. and Chuparina, E.V. (2002). Effect of aging reference standard material radiators under direct X‐ray fluorescence analysis of plant materials. Anal. Control 6 (5): 557–565. (in Russian).

56 56 Anjos, M.J., Lopes, R.T., Jesus, E.F.O. et al. (2002). Quantitative determination of metals in radish using x‐ray fluorescence spectrometry. X‐Ray Spectrom. 31 (2): 120–123.

57 57 Queralt, I., Ovejero, M., Carvalho, M.L. et al. (2005). Quantitative determination of essential and trace element content of medicinal plants and their infusions by XRF and ICP techniques. X‐Ray Spectrom. 34 (3): 213–217.

58 58 Chuparina, E.V., Gunicheva, T.N., Belogolova, G.А., and Matushenko, G.V. (2005). Application of X‐ray fluorescence analysis for studying chemical element distributions in different plant parts, examplified artichoke. Anal. Control 9 (4): 405–409. (in Russian).

59 59 Chuparina, E.V. and Gunicheva, T.N. (2004). State and problems of X‐ray fluorescence analysis of plant materials. Anal. Control 8 (3): 211–226. (in Russian).

60 60 Chuparina, E.V. and Martynov, A.M. (2011). Application of nondestructive X‐ray fluorescence analysis to determine the element composition of medicinal plants. J. Anal. Chem. 66 (4): 389–395.

61 61 Anawar, H.M., Canha, N., Freitas, M.C. et al. (2011). Effects of different drying processes on the concentrations of metals and metalloids in plant materials. J. Radioanal. Nucl. Chem. 289: 29–34.

62 62 Kuehner, E.C. and Pella, P.A. (1979). Energy‐dispersive X‐ray spectrometric analysis of NBS standard reference material 1571 orchard leaves after oxidation and borate fusion. Appl. Spectrosc. 33 (6): 632–634.

63 63 Desideri, D., Meli, M.A., Roselli, C., and Feduzi, L. (2011). Polarized X‐ray fluorescence spectrometer (EDPXRF) for the determination of essential and non‐essential elements in tea. Microchem. J. 98: 186–189.

64 64 Desideri, D., Meli, M.A., Roselli, C., and Feduzi, L. (2011). Determination of essential and non‐essential elements in herbal tea and camomile by polarised X‐rays fluorescence spectrometer (EDPXRF). J. Radioanal. Nucl. Chem. 290: 391–396.

65 65 Mbaye, M., Traoré, A., Ndao, A.S., and Wagué, A. (2013). Classification of tea consumed in Senegal using XRF techniques and chemometric based on their country of origin. Afr. J. Agric. Res. 8 (44): 5522–5529.

66 66 Revenko, A.G., Suvorova, D.S., and Khudonogova, E.V. (2018). Investigation of filter applicability for XRF analysis in the longwave range. Anal. Control 22 (2): 117–127. https://doi.org/10.15826/analitika.2018.22.2.009 (in Russian).

67 67 Sahin, Y., Nas, S., and Gokalp, H.Y. (1991). Effect of shooting period, region of growth and processing method on the Fe and Mn content of tea determined by X‐ray fluorescence. Int. J. Food Sci. Technol. 26: 485–492.

68 68 Nas, S., Gokalp, H.Y., and Sahin, Y. (1993). K and Ca content of fresh green tea, black tea, and tea residue determined by X‐ray fluorescence analysis. Z. Lebensm. Unters. Forsch. 196: 32–37.

69 69 Xie, M., von Bohlen, A., Klockenkämper, R. et al. (1998). Multielement analysis of Chinese tea (Camellia sinensis) by total‐reflection X‐ray fluorescence. Z. Lebensm. Unters. Forsch. A 207: 31–38.

70 70 Salvador, M.J., Lopes, G.N., Filho, V.F.N., and Zucchi, O.L.A.D. (2002). Quality control of commercial tea by X‐ray fluorescence. X‐Ray Spectrom. 31 (2): 141–144.

71 71 Brytov, I.A., Plotnikov, R.I., and Rechinsky, A.A. (2005). Material identification by X‐ray spectra. Industrial Lab. Diagn. Mater. 71 (7): 11–17 (In Russian).

72 72 Tanizawa, Y., Abe, T., and Yamada, K. (2007). Black tea stain formed on the surface of teacups and pots. Part 1 – study on the chemical composition and structure. Food Chem. 103 (1): 1–7.

73 73 Ercilsi, S., Demir, F., Budak, G., and Karabulut, A. (2009). Determination of elemental variations in tea leaves (Camellia sinensis L.) in different harvest time by WDXRF spectrometry. Asian J. Chem. 21 (2): 1313–1317.

74 74 Wastowski, A.D., Gonsiorkiewicz, R.J.P., Cherubin, M.R. et al. (2013). Determination of the inorganic constituents of commercial teas and their infusions by the technique of energy dispersive X‐ray fluorescence spectrometry. J. Med. Plant Res. 7: 179–185.

75 75 Afonin, V.P., Gunicheva, T.N., and Piskunova, L.F. (1984). X‐Ray Fluorescence Silicate Analysis. Novosibirsk: Nauka (in Russian).

76 76 Borkhodoev, V.Ya. (1999). X‐Ray Fluorescence Analysis of Rocks by Fundamental Parameter Method. Magadan: NEISRI FEB RAS (in Russian).

77 77 Pavlinsky, G.V. (2008). Fundamentals of X‐Ray Physics. Cambridge: International Science of Publishing Ltd.

78 78 Li, X. and Yu, Z. (2016). Determination of selenium in biological samples with an energy‐dispersive X‐ray fluorescence spectrometer. Appl. Radiat. Isot. 111: 45–49.

79 79 Rajapaksha, D., Waduge, V., and Padilla‐Alvarez, R. (2017). XRF to support food traceability studies: classification of Sri Lankan tea based on their region of origin. X‐Ray Spectrom. 46 (4): 220–224.

80 80 Dalipi, R., Borgese, L., and Tsuji, K. (2018). Elemental analysis of teas, herbs and their infusions by means of total reflection X‐ray fluorescence. J. Food Compos. Anal. 67: 128–134.

81 81 Cruz, R., Morais, S., and Casa, S. (2015). Mineral composition variability of coffees: a result of processing and production. In: Processing and Impact on Active Components in Food (ed. V.R. Preedy), 549–557. Elsevier. Chapter 66.

82 82 Orlic, I., Makanic, J., and Valkovic, V. (1986). Optimization of XRFS for the analysis of toxic elements and heavy metals in coffee products. J. Radioanal. Nucl. Chem. 102 (1): 203–211.

83 83 Ninomiya, T. (2004). X‐Ray Spectrometry in Forensic Research. X‐Ray Spectrometry: Recent Technological Advances (eds. K. Tsuji et al.), Kouichi Tsuji, Jasna Injuk, Rene Van Grieken (Eds.) 553–567. Wiley.

84 84 Akamine, T., Otaka, A., Hokura, A. et al. (2010). Determination of trace elements in coffee beans by XRF spectrometer equipped with polarization optics and its application to identification of their production area. Bunseki Kagaku 59 (10): 863–871.

85 85 Debastiani, R., dos Santos, C.E.I., Yoneama, M.L. et al. (2014). Ion beam analysis of ground coffee and roasted coffee beans. Nucl. Instrum. Methods Phys. Res. B. 318: 202–206.

86 86 Hernandez, M.C., Romero, D., Torres, H. et al. (2017). X‐ray fluorescence analysis of ground coffee. J. Nucl. Phys. Mater. Sci. Rad. Appl. 5 (1): 25–34.

87 87 Debastiani, R., dos Santos, C.E., Ramos, M.M. et al. (2019). Elemental analysis of Brazilian coffee with ion beam techniques: from ground coffee to the final beverage. Food Res. Int. 119: 297–304.

88 88 Maltsev, A.S., Sharykina, D.S., Chuparina, E.V. et al. (2019). Multielement analysis of tea by total reflection X‐ray fluorescence spectrometry. Anal. Control 23 (2): 247–257. (in Russian).

89 89 Dalipi, R., Margui, E., Borgese, L., and Depero, L. (2017). Multi‐element analysis of vegetal foodstuffs by means of low power total reflection X‐ray fluorescence (TXRF) spectrometry. Food Chem. 218: 348–355.

90 90 Revenko, A.G., Losev, N.F., and Velichko, J.I. (1972). Die Methode zur Rontgenspektralаnalyse fur mehrkomponentige Proben unter Benutzung von zwei Entnahme‐winkeln der Fluoreszenzstrahlung. Vortrage der Tagung "Die Rontgen‐spektrometrie und ihre Bedeutung als Analysenmethode, Berlin, 106–128.

91 91 Revenko, A.G., Pavlinsky, G.V., and Losev, N.F. (1972). Study of relation of X‐ray fluorescence intensities with analyzing element concentrations in multicomponent samples. Industrial Lab. 38 (12): 1451–1458 (In Russian).

92 92 Pavlinsky, G.V., Velichko, Y.I., and Revenko, A.G. (1977). Program for calculating the intensity of X‐ray fluorescence spectrum. Industrial Lab. 43 (4): 433–436 (In Russian).

93 93 Pavlinsky, G.V. and Kitov, B.I. (1979). Influence of divergence of the primary radiation beam on the line intensity of the X‐ray fluorescence spectrum. X‐Ray Spectrom. 8 (3): 96–101.

94 94 Velichko, Y.I. and Revenko, A.G. (1979). Use of theoretical intensities in quantitative X‐ray spectral analysis. Review. Apparat. Methods X‐Ray. Anal. 22: 146–161 (In Russian).

95 95 Revenko, A.G. (2002). X‐ray fluorescence analysis of rocks, soils and sediments. X‐Ray Spectrom. 31 (3): 264–273.

96 96 Revenko, A.G. (2010). Estimation and account for matrix effects in studying glass materials of cultural heritage by X‐ray spectral analysis. X‐Ray Spectrom. 39 (1): 63–69.

97 97 Pashkova, G.V. and Revenko, A.G. (2013). Choice of conditions for the natural water analysis using a total reflection X‐ray fluorescence spectrometer. Anal. Control 17 (1): 10–20. (in Russian).

98 98 Pashkova, G.V., Revenko, A.G., and Finkelshtein, A.L. (2013). Study of factors affecting the results of natural water analyses by total reflection X‐ray fluorescence. X‐Ray Spectrom. 42 (6): 524–530.

99 99 Suvorova, D.S., Khudonogova, E.V., and Revenko, A.G. (2016). Development of the XRF determination technique for the Ga, Hf, and Ta contents in rare earth ores. Anal. Control 20 (4): 344–354. (in Russian).

100 100 Finkel'shtein, A.L. and Afonin, V.P. (1986). Calculation of the intensity of X‐ray fluorescence. S.V. Lontsikh, Ed. In: Methods of X‐Ray Analysis, 5–11. Novosibirsk: Nauka Publishers (in Russian).

101 101 Govindaraju, K. (1994). Compilation of working values and sample description for 383 geostandards. Geostand. Newslett. Spec. Issue 18: 1–158.

X-Ray Fluorescence in Biological Sciences

Подняться наверх