Читать книгу Genomic and Epigenomic Biomarkers of Toxicology and Disease - Группа авторов - Страница 32
References
Оглавление1 Amorim, M.G., Valieris, R., Drummond, R.D., Pizzi, M.P., Freitas, V.M., Sinigaglia-Coimbra, R., Calin, G.A., Pasqualini, R., Arap, W., Silva, I.T., Dias-neto, E., and Nunes, D.N. (2017). A total transcriptome profiling method for plasma-derived extracellular vesicles: Applications for liquid biopsies. Sci. Rep. 7: 14395.
2 Arroyo, J.D., Chevillet, J.R., Kroh, E.M., Ruf, I.K., Pritchard, C.C., Gibson, D.F., Mitchell, P.S., Bennett, C.F., Pogosova-Agadjanyan, E.L., Stirewalt, D.L., Tait, J.F., and Tewari, M. (2011). Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA 108: 5003–5008.
3 Ashley, J., Cordy, B., Lucia, D., Fradkin, L.G., Budnik, V., and Thomson, T. (2018). Retrovirus-like Gag protein Arc1 binds RNA and traffics across synaptic boutons. Cell 172 (262–274): e11.
4 Bailey, W.J. and Glaab, W.E. (2018). Accessible miRNAs as novel toxicity biomarkers. Int. J. Toxicol. 37: 116–120.
5 Bala, S., Petrasek, J., Mundkur, S., Catalano, D., Levin, I., Ward, J., Alao, H., Kodys, K., and Szabo, G. (2012). Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology 56: 1946–1957.
6 Balansky, R., Longobardi, M., Ganchev, G., Iltcheva, M., Nedyalkov, N., Atanasov, P., Toshkova, R., De Flora, S., and Izzotti, A. (2013). Transplacental clastogenic and epigenetic effects of gold nanoparticles in mice. Mutat. Res. 751–752: 42–48.
7 Balasubramanian, S., Gunasekaran, K., Sasidharan, S., Jeyamanickavel Mathan, V., and Perumal, E. (2020). MicroRNAs and xenobiotic toxicity: An overview. Toxicol. Rep. 7: 583–595.
8 Beck, R., Bommarito, P., Douillet, C., Kanke, M., Del Razo, L.M., Garcia-Vargas, G., Fry, R.C., Sethupathy, P., and Styblo, M. (2018). Circulating miRNAs associated with arsenic exposure. Environ. Sci. Technol. 52: 14487–14495.
9 Beezhold, K., Liu, J., Kan, H., Meighan, T., Castranova, V., Shi, X., and Chen, F. (2011). miR-190-mediated downregulation of PHLPP contributes to arsenic-induced Akt activation and carcinogenesis. Toxicol. Sci. 123: 411–420.
10 Bleck, B., Grunig, G., Chiu, A., Liu, M., Gordon, T., Kazeros, A., and Reibman, J. (2013). MicroRNA-375 regulation of thymic stromal lymphopoietin by diesel exhaust particles and ambient particulate matter in human bronchial epithelial cells. J. Immunol. 190: 3757–3763.
11 Bollati, V., Angelici, L., Rizzo, G., Pergoli, L., Rota, F., Hoxha, M., Nordio, F., Bonzini, M., Tarantini, L., Cantone, L., Pesatori, A.C., Apostoli, P., Baccarelli, A.A., and Bertazzi, P.A. (2015). Microvesicle-associated microRNA expression is altered upon particulate matter exposure in healthy workers and in A549 cells. J. Appl. Toxicol. 35: 59–67.
12 Bollati, V., Marinelli, B., Apostoli, P., Bonzini, M., Nordio, F., Hoxha, M., Pegoraro, V., Motta, V., Tarantini, L., Cantone, L., Schwartz, J., Bertazzi, P.A., and Baccarelli, A. (2010). Exposure to metal-rich particulate matter modifies the expression of candidate microRNAs in peripheral blood leukocytes. Environ. Health Perspect. 118: 763–768.
13 Bonneau, E., Neveu, B., Kostantin, E., Tsongalis, G.J., and De Guire, V. (2019). How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC 30: 114–127.
14 Brunetto, M.R., Cavallone, D., Oliveri, F., Moriconi, F., Colombatto, P., Coco, B., Ciccorossi, P., Rastelli, C., Romagnoli, V., Cherubini, B., Teilum, M.W., Blondal, T., and Bonino, F. (2014). A serum microRNA signature is associated with the immune control of chronic hepatitis B virus infection. PLoS One 9: e110782.
15 Buschmann, D., Kirchner, B., Hermann, S., Marte, M., Wurmser, C., Brandes, F., Kotschote, S., Bonin, M., Steinlein, O.K., Pfaffl, M.W., Schelling, G., and Reithmair, M. (2018). Evaluation of serum extracellular vesicle isolation methods for profiling miRNAs by next-generation sequencing. J. Extracell Vesicles 7: 1481321.
16 Bushel, P.R., Caiment, F., Wu, H., O’Lone, R., Day, F., Calley, J., Smith, A., and Li, J. (2018). RATEmiRs: The rat atlas of tissue-specific and enriched miRNAs database. BMC Genom. 19: 825.
17 Cave, M.C., Pinkston, C.M., Rai, S.N., Wahlang, B., Pavuk, M., Head, K.Z., Carswell, G.K., Nelson, G.M., Klinge, C.M., Bell, D.A., Birnbaum, L.S., and Chorley, B.N. (2022). Circulating microRNAs, polychlorinated biphenyls, and environmental liver disease in the Anniston Community Health Survey. Environ. Health Perspect 101: 17003.
18 Cermelli, S., Ruggieri, A., Marrero, J.A., Ioannou, G.N., and Beretta, L. (2011). Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS One 6: e23937.
19 Chakraborty, C., Sharma, A.R., Sharma, G., and Lee, S.S. (2021). Therapeutic advances of miRNAs: A preclinical and clinical update. J. Adv. Res. 28: 127–138.
20 Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., Guo, J., Zhang, Y., Chen, J., Guo, X., Li, Q., Li, X., Wang, W., Zhang, Y., Wang, J., Jiang, X., Xiang, Y., Xu, C., Zheng, P., Zhang, J., Li, R., Zhang, H., Shang, X., Gong, T., Ning, G., Wang, J., Zen, K., Zhang, J., and Zhang, C.Y. (2008). Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18: 997–1006.
21 Chevillet, J.R., Kang, Q., Ruf, I.K., Briggs, H.A., Vojtech, L.N., Hughes, S.M., Cheng, H.H., Arroyo, J.D., Meredith, E.K., Gallichotte, E.N., Pogosova-Agadjanyan, E.L., Morrissey, C., Stirewalt, D.L., Hladik, F., Yu, E.Y., Higano, C.S., and Tewari, M. (2014). Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc. Natl. Acad. Sci. USA 111: 14888–14893.
22 Chorley, B.N., Atabakhsh, E., Doran, G., Gautier, J.C., Ellinger-Ziegelbauer, H., Jackson, D., Sharapova, T., Yuen, P.S.T., Church, R.J., Couttet, P., Froetschl, R., Mcduffie, J., Martinez, V., Pande, P., Peel, L., Rafferty, C., Simutis, F.J., and Harrill, A.H. (2021a). Methodological considerations for measuring biofluid-based microRNA biomarkers. Crit. Rev. Toxicol. 51 (3): 264–282264–282.
23 Chorley, B.N., Carswell, G.K., Nelson, G., Bhat, V.S., and Wood, C.E. (2020). Early microRNA indicators of PPARalpha pathway activation in the liver. Toxicol. Rep. 7: 805–815.
24 Chorley, B.N., Ellinger-Ziegelbauer, H., Tackett, M., Simutis, F.J., Harrill, A.H., Mcduffie, J., Atabakhsh, E., Nassirpour, R., Whiteley, L.O., Leonard, J.F., Carswell, G.K., Harpur, E., Chen, C.L., and Gautier, J.C. (2021b). Urinary miRNA biomarkers of drug-induced kidney injury and their site specificity within the nephron. Toxicol. Sci. 180: 1–16.
25 Church, R.J., Kullak-Ublick, G.A., Aubrecht, J., Bonkovsky, H.L., Chalasani, N., Fontana, R.J., Goepfert, J.C., Hackman, F., King, N.M.P., Kirby, S., Kirby, P., Marcinak, J., Ormarsdottir, S., Schomaker, S.J., Schuppe-koistinen, I., Wolenski, F., Arber, N., Merz, M., Sauer, J.M., Andrade, R.J., Van Bommel, F., Poynard, T., and Watkins, P.B. (2019). Candidate biomarkers for the diagnosis and prognosis of drug-induced liver injury: An international collaborative effort. Hepatology 69: 760–773.
26 Clark, P.M., Loher, P., Quann, K., Brody, J., Londin, E.R., and Rigoutsos, I. (2014). Argonaute CLIP-Seq reveals miRNA targetome diversity across tissue types. Sci. Rep. 4: 5947.
27 Condrat, C.E., Thompson, D.C., Barbu, M.G., Bugnar, O.L., Boboc, A., Cretoiu, D., Suciu, N., Cretoiu, S.M., and Voinea, S.C. (2020). miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells 9 (2): 276.
28 Costa, C., Teodoro, M., Rugolo, C.A., Alibrando, C., Giambo, F., Briguglio, G., and Fenga, C. (2020). MicroRNAs alteration as early biomarkers for cancer and neurodegenerative diseases: New challenges in pesticides exposure. Toxicol. Rep. 7: 759–767.
29 Deng, Q., Huang, S., Zhang, X., Zhang, W., Feng, J., Wang, T., Hu, D., Guan, L., Li, J., Dai, X., Deng, H., Zhang, X., and Wu, T. (2014). Plasma microRNA expression and micronuclei frequency in workers exposed to polycyclic aromatic hydrocarbons. Environ. Health Perspect. 122: 719–725.
30 Ding, E., Zhao, Q., Bai, Y., Xu, M., Pan, L., Liu, Q., Wang, B., Song, X., Wang, J., Chen, L., and Zhu, B. (2016). Plasma microRNAs expression profile in female workers occupationally exposed to mercury. J. Thorac. Dis. 8: 833–841.
31 Dutta, R.K., Chinnapaiyan, S., and Unwalla, H. (2019). Aberrant microRNAomics in pulmonary complications: Implications in lung health and diseases. Mol. Ther. Nucleic Acids 18: 413–431.
32 Farina, N.H., Wood, M.E., Perrapato, S.D., Francklyn, C.S., Stein, G.S., Stein, J.L., and Lian, J.B. (2014). Standardizing analysis of circulating microRNA: Clinical and biological relevance. J. Cell. Biochem. 115: 805–811.
33 Finicelli, M., Squillaro, T., Galderisi, U., and Peluso, G. (2020). Micro-RNAs: Crossroads between the exposure to environmental particulate pollution and the obstructive pulmonary disease. Int. J. Mol. Sci. 21 (19): 7221.
34 Fossati, S., Baccarelli, A., Zanobetti, A., Hoxha, M., Vokonas, P.S., Wright, R.O., and Schwartz, J. (2014). Ambient particulate air pollution and microRNAs in elderly men. Epidemiology 25: 68–78.
35 Fry, R.C., Rager, J.E., Bauer, R., Sebastian, E., Peden, D.B., Jaspers, I., and Alexis, N.E. (2014). Air toxics and epigenetic effects: Ozone altered microRNAs in the sputum of human subjects. Am. J. Physiol. Lung Cell Mol. Physiol. 306: L1129–L1137.
36 Gant, T.W., Sauer, U.G., Zhang, S.D., Chorley, B.N., Hackermuller, J., Perdichizzi, S., Tollefsen, K.E., Van Ravenzwaay, B., Yauk, C., Tong, W., and Poole, A. (2017). A generic Transcriptomics Reporting Framework (TRF) foromics data processing and analysis. Regul. Toxicol. Pharmacol. 91 (Suppl 1): S36–S45.
37 Gao, S., Lin, P.I., Mostofa, G., Quamruzzaman, Q., Rahman, M., Rahman, M.L., Su, L., Hsueh, Y.M., Weisskopf, M., Coull, B., and Christiani, D.C. (2019). Determinants of arsenic methylation efficiency and urinary arsenic level in pregnant women in Bangladesh. Environ Health 18: 94.
38 Giraldez, M.D., Spengler, R.M., Etheridge, A., Godoy, P.M., Barczak, A.J., Srinivasan, S., De Hoff, P.L., Tanriverdi, K., Courtright, A., Lu, S., Khoory, J., Rubio, R., Baxter, D., Driedonks, T.A.P., Buermans, H.P.J., Nolte-’t Hoen, E.N.M., Jiang, H., Wang, K., Ghiran, I., Wang, Y.E., Van Keuren-Jensen, K., Freedman, J.E., Woodruff, P.G., Laurent, L.C., Erle, D.J., Galas, D.J., and Tewari, M. (2018). Comprehensive multi-center assessment of small RNA-seq methods for quantitative miRNA profiling. Nat. Biotechnol. 36: 746–757.
39 Git, A., Dvinge, H., Salmon-Divon, M., Osborne, M., Kutter, C., Hadfield, J., Bertone, P., and Caldas, C. (2010). Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16: 991–1006.
40 Gjorgjieva, M., Sobolewski, C., Dolicka, D., Correia De Sousa, M., and Foti, M. (2019). miRNAs and NAFLD: From pathophysiology to therapy. Gut 68: 2065–2079.
41 Gu, S. and Kay, M.A. (2010). How do miRNAs mediate translational repression? Silence 1: 11.
42 Guduric-Fuchs, J., O’Connor, A., Camp, B., O’Neill, C.L., Medina, R.J., and Simpson, D.A. (2012). Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genom. 13: 357.
43 Guida, M., Marra, M.L., Zullo, F., Guida, M., Trifuoggi, M., Biffali, E., Borra, M., De Mieri, G., D’Alessandro, R., and De Felice, B. (2013). Association between exposure to dioxin-like polychlorinated biphenyls and miR-191 expression in human peripheral blood mononuclear cells. Mutat. Res. 753: 36–41.
44 Guo, X., Yang, Q., Zhang, W., Chen, Y., Ren, J., and Gao, A. (2019). Associations of blood levels of trace elements and heavy metals with metabolic syndrome in Chinese male adults with microRNA as mediators involved. Environ. Pollut. 248: 66–73.
45 Hagiwara, K., Katsuda, T., Gailhouste, L., Kosaka, N., and Ochiya, T. (2015). Commitment of Annexin A2 in recruitment of microRNAs into extracellular vesicles. FEBS Lett. 589: 4071–4078.
46 Hanna, J., Hossain, G.S., and Kocerha, J. (2019). The potential for microRNA therapeutics and clinical research. Front Genet. 10: 478.
47 Harrill, A.H., Mccullough, S.D., Wood, C.E., Kahle, J.J., and Chorley, B.N. (2016). MicroRNA biomarkers of toxicity in biological matrices. Toxicol. Sci. 152: 264–272.
48 Herberth, G., Bauer, M., Gasch, M., Hinz, D., Roder, S., Olek, S., Kohajda, T., Rolle-Kampczyk, U., Von Bergen, M., Sack, U., Borte, M., Lehmann, I., and Lifestyle and Environmental Factors and Their Influence on Newborns Allergy Risk Study Group (2014). Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers. J. Allergy Clin. Immunol. 133: 543–550.
49 Hill, M. and Tran, N. (2021). miRNA interplay: Mechanisms and consequences in cancer. Dis. Model Mech. 14 (4): dmm047662.
50 Holman, N.S., Mosedale, M., Wolf, K.K., Lecluyse, E.L., and Watkins, P.B. (2016). Subtoxic alterations in hepatocyte-derived exosomes: An early step in drug-induced liver injury? Toxicol. Sci. 151: 365–375.
51 Huang, Y., Yan, Y., Xv, W., Qian, G., Li, C., Zou, H., and Li, Y. (2018). A new insight into the roles of miRNAs in metabolic syndrome. Biomed. Res. Int. 2018: 7372636.
52 Isakova, A., Fehlmann, T., Keller, A., and Quake, S.R. (2020). A mouse tissue atlas of small noncoding RNA. Proc. Natl. Acad. Sci. USA 117: 25634–25645.
53 Izzotti, A. and Pulliero, A. (2014). The effects of environmental chemical carcinogens on the microRNA machinery. Int. J. Hyg. Environ. Health 217: 601–627.
54 Janas, T., Janas, M.M., Sapon, K., and Janas, T. (2015). Mechanisms of RNA loading into exosomes. FEBS Lett. 589: 1391–1398.
55 Janas, T., Janas, T., and Yarus, M. (2006). Specific RNA binding to ordered phospholipid bilayers. Nucleic Acids Res. 34: 2128–2136.
56 Jenike, A.E. and Halushka, M.K. (2021). miR-21: A non-specific biomarker of all maladies. Biomark Res. 9: 18.
57 Jin, Y., Wong, Y.S., Goh, B.K.P., Chan, C.Y., Cheow, P.C., Chow, P.K.H., Lim, T.K.H., Goh, G.B.B., Krishnamoorthy, T.L., Kumar, R., Ng, T.P., Chong, S.S., Tan, H.H., Chung, A.Y.F., Ooi, L., Chang, J.P.E., Tan, C.K., and Lee, C.G.L. (2019). Circulating microRNAs as potential diagnostic and prognostic biomarkers in hepatocellular carcinoma. Sci. Rep. 9: 10464.
58 Juzenas, S., Lindqvist, C.M., Ito, G., Dolshanskaya, Y., Halfvarson, J., Franke, A., and Hemmrich-Stanisak, G. (2020). Depletion of erythropoietic miR-486-5p and miR-451a improves detectability of rare microRNAs in peripheral blood-derived small RNA sequencing libraries. NAR Genom. Bioinform. 2: lqaa008.
59 Juzwik, C.A.S.S.D., Zhang, Y., Paradis-Isler, N., Sylvester, A., Amar-Zifkin, A., Douglas, C., Morquette, B., Moore, C.S., and Fournier, A.E. (2019). microRNA dysregulation in neurodegenerative diseases: A systematic review. Prog. Neurobiol. 182: 101664.
60 Kagawa, T., Shirai, Y., Oda, S., and Yokoi, T. (2018). Identification of specific microRNA biomarkers in early stages of hepatocellular injury, cholestasis, and steatosis in rats. Toxicol. Sci. 166: 228–239.
61 Koberle, V., Pleli, T., Schmithals, C., Augusto Alonso, E., Haupenthal, J., Bonig, H., Peveling-Oberhag, J., Biondi, R.M., Zeuzem, S., Kronenberger, B., Waidmann, O., and Piiper, A. (2013). Differential stability of cell-free circulating microRNAs: Implications for their utilization as biomarkers. PLoS One 8: e75184.
62 Koenig, E.M., Fisher, C., Bernard, H., Wolenski, F.S., Gerrein, J., Carsillo, M., Gallacher, M., Tse, A., Peters, R., Smith, A., Meehan, A., Tirrell, S., and Kirby, P. (2016). The beagle dog microRNA tissue atlas: Identifying translatable biomarkers of organ toxicity. BMC Genom. 17: 649.
63 Kong, A.P., Xiao, K., Choi, K.C., Wang, G., Chan, M.H., Ho, C.S., Chan, I., Wong, C.K., Chan, J.C., and Szeto, C.C. (2012). Associations between microRNA (miR-21, 126, 155 and 221), albuminuria and heavy metals in Hong Kong Chinese adolescents. Clin. Chim. Acta. 413: 1053–1057.
64 Koppers-Lalic, D., Hackenberg, M., Bijnsdorp, I.V., Van Eijndhoven, M.A.J., Sadek, P., Sie, D., Zini, N., Middeldorp, J.M., Ylstra, B., De Menezes, R.X., Wurdinger, T., Meijer, G.A., and Pegtel, D.M. (2014). Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep. 8: 1649–1658.
65 Kosaka, N., Iguchi, H., Hagiwara, K., Yoshioka, Y., Takeshita, F., and Ochiya, T. (2013). Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J. Biol. Chem. 288: 10849–10859.
66 Kossinova, O.A., Gopanenko, A.V., Tamkovich, S.N., Krasheninina, O.A., Tupikin, A.E., Kiseleva, E., Yanshina, D.D., Malygin, A.A., Ven’Yaminova, A.G., Kabilov, M.R., and Karpova, G.G. (2017). Cytosolic YB-1 and NSUN2 are the only proteins recognizing specific motifs present in mRNAs enriched in exosomes. Biochim. Biophys. Acta Proteins Proteom. 1865: 664–673.
67 Kozomara, A., Birgaoanu, M., and Griffiths-Jones, S. (2019). miRBase: From microRNA sequences to function. Nucleic Acids Res. 47: D155–D162.
68 Krauskopf, J., Caiment, F., Claessen, S.M., Johnson, K.J., Warner, R.L., Schomaker, S.J., Burt, D.A., Aubrecht, J., and Kleinjans, J.C. (2015). Application of high-throughput sequencing to circulating microRNAs reveals novel biomarkers for drug-induced liver injury. Toxicol. Sci. 143: 268–276.
69 Krauskopf, J., Caiment, F., Van Veldhoven, K., Chadeau-Hyam, M., Sinharay, R., Chung, K.F., Cullinan, P., Collins, P., Barratt, B., Kelly, F.J., Vermeulen, R., Vineis, P., De Kok, T.M., and Kleinjans, J.C. (2018). The human circulating miRNome reflects multiple organ disease risks in association with short-term exposure to traffic-related air pollution. Environ. Int. 113: 26–34.
70 Krauskopf, J., De Kok, T.M., Hebels, D.G., Bergdahl, I.A., Johansson, A., Spaeth, F., Kiviranta, H., Rantakokko, P., Kyrtopoulos, S.A., and Kleinjans, J.C. (2017). MicroRNA profile for health risk assessment: Environmental exposure to persistent organic pollutants strongly affects the human blood microRNA machinery. Sci. Rep. 7: 9262.
71 LaBelle, J., Bowser, M., Brown, A., Farnam, L., Kho, A., Li, J., Mcgeachie, M., Chase, R., Piehl, S., Allen, K., Hobbs, B.D., Weiss, S.T., Hersh, C., Tantisira, K., and Amr, S.S. (2021). Commercially available blocking oligonucleotides effectively suppress unwanted hemolysis related miRNAs in a large whole blood RNA cohort. J. Mol. Diagn. 23 (6): 671–682.
72 Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., and Tuschl, T. (2002). Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12: 735–739.
73 Lake, A.D., Wood, C.E., Bhat, V.S., Chorley, B.N., Carswell, G.K., Sey, Y.M., Kenyon, E.M., Padnos, B., Moore, T.M., Tennant, A.H., Schmid, J.E., George, B.J., Ross, D.G., Hughes, M.F., Corton, J.C., Simmons, J.E., Mcqueen, C.A., and Hester, S.D. (2016). Dose and effect thresholds for early key events in a PPARalpha-mediated mode of action. Toxicol. Sci. 149: 312–325.
74 Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, A.O., Landthaler, M., Lin, C., Socci, N.D., Hermida, L., Fulci, V., Chiaretti, S., Foa, R., Schliwka, J., Fuchs, U., Novosel, A., Muller, R.U., Schermer, B., Bissels, U., Inman, J., Phan, Q., Chien, M., Weir, D.B., Choksi, R., De Vita, G., Frezzetti, D., Trompeter, H.I., Hornung, V., Teng, G., Hartmann, G., Palkovits, M., Di Lauro, R., Wernet, P., Macino, G., Rogler, C.E., Nagle, J.W., Ju, J., Papavasiliou, F.N., Benzing, T., Lichter, P., Tam, W., Brownstein, M.J., Bosio, A., Borkhardt, A., Russo, J.J., Sander, C., Zavolan, M., and Tuschl, T. (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129: 1401–1414.
75 Li, D., Knox, B., Gong, B., Chen, S., Guo, L., Liu, Z., Tong, W., and Ning, B. (2021). Identification of translational microRNA biomarker candidates for ketoconazole-induced liver injury using next-generation sequencing. Toxicol. Sci. 179: 31–43.
76 Li, L., Zhu, D., Huang, L., Zhang, J., Bian, Z., Chen, X., Liu, Y., Zhang, C.Y., and Zen, K. (2012). Argonaute 2 complexes selectively protect the circulating microRNAs in cell-secreted microvesicles. PLoS One 7: e46957.
77 Li, M., Zeringer, E., Barta, T., Schageman, J., Cheng, A., and Vlassov, A.V. (2014). Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 369 (1652): 20130502.
78 Li, Q., Kappil, M.A., Li, A., Dassanayake, P.S., Darrah, T.H., Friedman, A.E., Friedman, M., Lambertini, L., Landrigan, P., Stodgell, C.J., Xia, Y., Nanes, J.A., Aagaard, K.M., Schadt, E.E., Murray, J.C., Clark, E.B., Dole, N., Culhane, J., Swanson, J., Varner, M., Moye, J., Kasten, C., Miller, R.K., and Chen, J. (2015). Exploring the associations between microRNA expression profiles and environmental pollutants in human placenta from the National Children’s Study (NCS). Epigenetics 10: 793–802.
79 Li, T., Evdokimov, E., Shen, R.F., Chao, C.C., Tekle, E., Wang, T., Stadtman, E.R., Yang, D.C., and Chock, P.B. (2004). Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: A proteomic analysis. Proc. Natl. Acad. Sci. USA 101: 8551–8556.
80 Lin, J., Ma, L., Zhang, D., Gao, J., Jin, Y., Han, Z., and Lin, D. (2019). Tumour biomarkers: Tracing the molecular function and clinical implication. Cell Prolif. 52: e12589.
81 Liu, J.Q., Niu, Q., Hu, Y.H., Li, Y., Wang, H.X., Xu, S.Z., Ding, Y.S., Li, S.G., and Ma, R.L. (2018). The bidirectional effects of arsenic on miRNA-21: A systematic review and meta-analysis. Biomed. Environ. Sci. 31: 654–666.
82 Llewellyn, H.P., Vaidya, V.S., Wang, Z., Peng, Q., Hyde, C., Potter, D., Wang, J., Zong, Q., Arat, S., Martin, M., Masek-Hammerman, K., Warner, R., Johnson, K., Kullak-Ublick, G.A., Aithal, G.P., Dear, J.W., and Ramaiah, S.K. (2021). Evaluating the sensitivity and Specificity of promising circulating biomarkers to diagnose liver injury in humans. Toxicol. Sci. 181: 23–34.
83 Lopez-Sanchez, G.N., Dominguez-Perez, M., Uribe, M., Chavez-Tapia, N.C., and Nuno-Lambarri, N. (2021). Non-alcoholic fatty liver disease and microRNAs expression, how it affects the development and progression of the disease. Ann. Hepatol. 21: 100212.
84 Louwies, T., Jaki Mekjavic, P., Cox, B., Eiken, O., Mekjavic, I.B., Kounalakis, S., and De Boever, P. (2016). Separate and combined effects of hypoxia and horizontal bed rest on retinal blood vessel diameters. Invest Ophthalmol Vis Sci 57: 4927–4932.
85 Lu, J. and Clark, A.G. (2012). Impact of microRNA regulation on variation in human gene expression. Genome Res. 22: 1243–1254.
86 Ludwig, N., Leidinger, P., Becker, K., Backes, C., Fehlmann, T., Pallasch, C., Rheinheimer, S., Meder, B., Stahler, C., Meese, E., and Keller, A. (2016). Distribution of miRNA expression across human tissues. Nucleic Acids Res. 44: 3865–3877.
87 Maccani, M.A., Avissar-whiting, M., Banister, C.E., Mcgonnigal, B., Padbury, J.F., and Marsit, C.J. (2010). Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics 5: 583–589.
88 Mathieu, M., Martin-Jaular, L., Lavieu, G., and Thery, C. (2019). Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21: 9–17.
89 McKenzie, A.J., Hoshino, D., Hong, N.H., Cha, D.J., Franklin, J.L., Coffey, R.J., Patton, J.G., and Weaver, A.M. (2016). KRAS-MEK signaling controls ago2 sorting into exosomes. Cell Rep. 15: 978–987.
90 Mestdagh, P., Hartmann, N., Baeriswyl, L., Andreasen, D., Bernard, N., Chen, C., Cheo, D., D’Andrade, P., Demayo, M., Dennis, L., Derveaux, S., Feng, Y., Fulmer-smentek, S., Gerstmayer, B., Gouffon, J., Grimley, C., Lader, E., Lee, K.Y., Luo, S., Mouritzen, P., Narayanan, A., Patel, S., Peiffer, S., Ruberg, S., Schroth, G., Schuster, D., Shaffer, J.M., Shelton, E.J., Silveria, S., Ulmanella, U., Veeramachaneni, V., Staedtler, F., Peters, T., Guettouche, T., Wong, L., and Vandesompele, J. (2014). Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat. Methods 11: 809–815.
91 Morales, S., Monzo, M., and Navarro, A. (2017). Epigenetic regulation mechanisms of microRNA expression. Biomol. Concepts 8: 203–212.
92 Mosedale, M., Eaddy, J.S., Trask, O.J. JR, Holman, N.S., Wolf, K.K., Lecluyse, E., Ware, B.R., Khetani, S.R., Lu, J., Brock, W.J., Roth, S.E., and Watkins, P.B. (2018). miR-122 release in exosomes precedes overt tolvaptan-induced necrosis in a primary human hepatocyte micropatterned coculture model. Toxicol. Sci. 161: 149–158.
93 Motta, V., Angelici, L., Nordio, F., Bollati, V., Fossati, S., Frascati, F., Tinaglia, V., Bertazzi, P.A., Battaglia, C., and Baccarelli, A.A. (2013). Integrative analysis of miRNA and inflammatory gene expression after acute particulate matter exposure. Toxicol. Sci. 132: 307–316.
94 Murillo, O.D., Thistlethwaite, W., Rozowsky, J., Subramanian, S.L., Lucero, R., Shah, N., Jackson, A.R., Srinivasan, S., Chung, A., Laurent, C.D., Kitchen, R.R., Galeev, T., Warrell, J., Diao, J.A., Welsh, J.A., Hanspers, K., Riutta, A., Burgstaller-Muehlbacher, S., Shah, R.V., Yeri, A., Jenkins, L.M., Ahsen, M.E., Cordon-cardo, C., Dogra, N., Gifford, S.M., Smith, J.T., Stolovitzky, G., Tewari, A.K., Wunsch, B.H., Yadav, K.K., Danielson, K.M., Filant, J., Moeller, C., Nejad, P., Paul, A., Simonson, B., Wong, D.K., Zhang, X., Balaj, L., Gandhi, R., Sood, A.K., Alexander, R.P., Wang, L., Wu, C., Wong, D.T.W., Galas, D.J., Van Keuren-jensen, K., Patel, T., Jones, J.C., Das, S., Cheung, K.H., Pico, A.R., Su, A.I., Raffai, R.L., Laurent, L.C., Roth, M.E., Gerstein, M.B., and Milosavljevic, A. (2019). exRNA atlas analysis reveals distinct extracellular RNA cargo types and their carriers present across human biofluids. Cell 177: 463–477 e15.
95 Nik Mohamed Kamal, N. and Shahidan, W.N.S. (2019). Non-exosomal and exosomal circulatory microRNAs: Which are more valid as biomarkers? Front Pharmacol. 10: 1500.
96 Nolte-’t Hoen, E.N., Buermans, H.P., Waasdorp, M., Stoorvogel, W., Wauben, M.H., and T Hoen, P.A. (2012). Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 40: 9272–9285.
97 O’Brien, K., Breyne, K., Ughetto, S., Laurent, L.C., and Breakefield, X.O. (2020). RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 21: 585–606.
98 Pascut, D., Cavalletto, L., Pratama, M.Y., Bresolin, S., Trentin, L., Basso, G., Bedogni, G., Tiribelli, C., and Chemello, L. (2019). Serum miRNA are promising biomarkers for the detection of early hepatocellular carcinoma after treatment with direct-acting antivirals. Cancers (Basel) 11.
99 Pavuk, M., Olson, J.R., Sjodin, A., Wolff, P., Turner, W.E., Shelton, C., Dutton, N.D., Bartell, S., and Anniston Environmental Health Research Consortium (2014). Serum concentrations of polychlorinated biphenyls (PCBs) in participants of the Anniston Community Health Survey. Sci. Total Environ. 0: 473–474: 286–297.
100 Petralia, F., Aushev, V.N., Gopalakrishnan, K., Kappil, M.N.W.K., Chen, J., Teitelbaum, S.L., and Wang, P. (2017). A new method to study the change of miRNA-mRNA interactions due to environmental exposures. Bioinformatics 33: i199–i207.
101 Qiao, J., Du, Y., Yu, J., and Guo, J. (2019). MicroRNAs as potential biomarkers of insecticide exposure: A review. Chem. Res. Toxicol. 32: 2169–2181.
102 Rager, J.E., Auerbach, S.S., Chappell, G.A., Martin, E., Thompson, C.M., and Fry, R.C. (2017). Benchmark dose modeling estimates of the concentrations of inorganic arsenic that induce changes to the neonatal transcriptome, proteome, and epigenome in a pregnancy cohort. Chem. Res. Toxicol. 30: 1911–1920.
103 Rager, J.E., Bailey, K.A., Smeester, L., Miller, S.K., Parker, J.S., Laine, J.E., Drobna, Z., Currier, J., Douillet, C., Olshan, A.F., Rubio-Andrade, M., Styblo, M., Garcia-Vargas, G., and Fry, R.C. (2014). Prenatal arsenic exposure and the epigenome: Altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood. Environ. Mol. Mutagen 55: 196–208.
104 Ramaiahgari, S.C., Auerbach, S.S., Saddler, T.O., Rice, J.R., Dunlap, P.E., Sipes, N.S., Devito, M.J., Shah, R.R., Bushel, P.R., Merrick, B.A., Paules, R.S., and Ferguson, S.S. (2019). The power of resolution: contextualized understanding of biological responses to liver injury chemicals using high-throughput transcriptomics and benchmark concentration modeling. Toxicol. Sci. 169: 553–566.
105 Rider, C.F., Yamamoto, M., Gunther, O.P., Hirota, J.A., Singh, A., Tebbutt, S.J., and Carlsten, C. (2016). Controlled diesel exhaust and allergen coexposure modulates microRNA and gene expression in humans: Effects on inflammatory lung markers. J. Allergy Clin. Immunol. 138: 1690–1700.
106 Robles-Diaz, M., Medina-Caliz, I., Stephens, C., Andrade, R.J., and Lucena, M.I. (2016). Biomarkers in DILI: One more step forward. Front Pharmacol. 7: 267.
107 Rodosthenous, R.S., Coull, B.A., Lu, Q., Vokonas, P.S., Schwartz, J.D., and Baccarelli, A.A. (2016). Ambient particulate matter and microRNAs in extracellular vesicles: A pilot study of older individuals. Part Fibre Toxicol. 13: 13.
108 Ruiz-Vera, T., Ochoa-Martinez, A.C., Zarazua, S., Carrizales-Yanez, L., and Perez-Maldonado, I.N. (2019). Circulating miRNA-126, -145 and -155 levels in Mexican women exposed to inorganic arsenic via drinking water. Environ. Toxicol. Pharmacol. 67: 79–86.
109 Saliminejad, K., Khorram Khorshid, H.R., and Ghaffari, S.H. (2019). Why have microRNA biomarkers not been translated from bench to clinic? Future Oncol. 15: 801–803.
110 Santangelo, L., Giurato, G., Cicchini, C., Montaldo, C., Mancone, C., Tarallo, R., Battistelli, C., Alonzi, T., Weisz, A., and Tripodi, M. (2016). The RNA-binding protein SYNCRIP is a component of the hepatocyte exosomal machinery controlling microRNA sorting. Cell Rep. 17: 799–808.
111 Schembri, F., Sridhar, S., Perdomo, C., Gustafson, A.M., Zhang, X., Ergun, A., Lu, J., Liu, G., Zhang, X., Bowers, J., Vaziri, C., Ott, K., Sensinger, K., Collins, J.J., Brody, J.S., Getts, R., Lenburg, M.E., and Spira, A. (2009). MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium. Proc. Natl. Acad. Sci. USA 106: 2319–2324.
112 Sharapova, T., Devanarayan, V., Leroy, B., Liguori, M.J., Blomme, E., Buck, W., and Maher, J. (2016). Evaluation of miR-122 as a serum biomarker for hepatotoxicity in investigative rat toxicology studies. Vet. Pathol. 53: 211–221.
113 Sharma, S. and Lu, H.C. (2018). microRNAs in Neurodegeneration: Current findings and potential impacts. J. Alzheimers Dis. Parkinsonism 8.
114 Shurtleff, M.J., Temoche-diaz, M.M., Karfilis, K.V., Ri, S., and Schekman, R. (2016). Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. Elife 5.
115 Sima, M., Rossnerova, A., Simova, Z., and Rossner, P., JR. (2021). The impact of air pollution exposure on the microRNA machinery and lung cancer development. J. Pers. Med. 11 (1): 60. doi: 10.3390/jpm11010060.
116 Sisto, R., Capone, P., Cerini, L., Sanjust, F., Paci, E., Pigini, D., Gatto, M.P., Gherardi, M., Gordiani, A., L’Episcopo, N., Tranfo, G., and Chiarella, P. (2019). Circulating microRNAs as potential biomarkers of occupational exposure to low dose organic solvents. Toxicol. Rep. 6: 126–135.
117 Smith, A., Calley, J., Mathur, S., Qian, H.R., Wu, H., Farmen, M., Caiment, F., Bushel, P.R., Li, J., Fisher, C., Kirby, P., Koenig, E., Hall, D.G., and Watson, D.E. (2016). The rat microRNA body atlas: Evaluation of the microRNA content of rat organs through deep sequencing and characterization of pancreas enriched miRNAs as biomarkers of pancreatic toxicity in the rat and dog. BMC Genom. 17: 694.
118 Sollome, J., Martin, E., Sethupathy, P., and Fry, R.C. (2016). Environmental contaminants and microRNA regulation: Transcription factors as regulators of toxicant-altered microRNA expression. Toxicol. Appl. Pharmacol. 312: 61–66.
119 Song, L., Zhang, Z., Zhang, J., Zhu, X., He, L., Shi, Z., Gao, L., and Feng, F. (2016). Ratio of microRNA-122/155 in isoniazid-induced acute liver injury in mice. Exp. Ther. Med. 12: 889–894.
120 Song, M.K. and Ryu, J.C. (2015). Blood miRNAs as sensitive and specific biological indicators of environmental and occupational exposure to volatile organic compound (VOC). Int. J. Hyg. Environ. Health 218: 590–602.
121 Sork, H., Corso, G., Krjutskov, K., Johansson, H.J., Nordin, J.Z., Wiklander, O.P.B., Lee, Y.X.F., Westholm, J.O., Lehtio, J., Wood, M.J.A., Mager, I., and El Andaloussi, S. (2018). Heterogeneity and interplay of the extracellular vesicle small RNA transcriptome and proteome. Sci. Rep. 8: 10813.
122 Srinivasan, S., Yeri, A., Cheah, P.S., Chung, A., Danielson, K., De Hoff, P., Filant, J., Laurent, C.D., Laurent, L.D., Magee, R., Moeller, C., Murthy, V.L., Nejad, P., Paul, A., Rigoutsos, I., Rodosthenous, R., Shah, R.V., Simonson, B., To, C., Wong, D., Yan, I.K., Zhang, X., Balaj, L., Breakefield, X.O., Daaboul, G., Gandhi, R., Lapidus, J., Londin, E., Patel, T., Raffai, R.L., Sood, A.K., Alexander, R.P., Das, S., and Laurent, L.C. (2019). Small RNA sequencing across diverse biofluids identifies optimal methods for exRNA isolation. Cell 177 (446–462): e16.
123 Starkey Lewis, P.J., Dear, J., Platt, V., Simpson, K.J., Craig, D.G., Antoine, D.J., French, N.S., Dhaun, N., Webb, D.J., Costello, E.M., Neoptolemos, J.P., Moggs, J., Goldring, C.E., and Park, B.K. (2011). Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology 54: 1767–1776.
124 Statello, L., Maugeri, M., Garre, E., Nawaz, M., Wahlgren, J., Papadimitriou, A., Lundqvist, C., Lindfors, L., Collen, A., Sunnerhagen, P., Ragusa, M., Purrello, M., Di Pietro, C., Tigue, N., and Valadi, H. (2018). Identification of RNA-binding proteins in exosomes capable of interacting with different types of RNA: RBP-facilitated transport of RNAs into exosomes. PLoS One 13: e0195969.
125 Stermer, A.R., Reyes, G., Hall, S.J., and Boekelheide, K. (2019). Small RNAs in rat sperm are a predictive and sensitive biomarker of exposure to the testicular toxicant ethylene glycol monomethyl ether. Toxicol. Sci. 169: 399–408.
126 Straumfors, A., Duale, N., Foss, O.A.H., and Mollerup, S. (2020). Circulating miRNAs as molecular markers of occupational grain dust exposure. Sci. Rep. 10: 11317.
127 Tellez, C.S., Juri, D.E., Do, K., Bernauer, A.M., Thomas, C.L., Damiani, L.A., Tessema, M., Leng, S., and Belinsky, S.A. (2011). EMT and stem cell-like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogen-induced transformation of human lung epithelial cells. Cancer Res. 71: 3087–3097.
128 Temoche-Diaz, M.M., Shurtleff, M.J., Nottingham, R.M., Yao, J., Fadadu, R.P., Lambowitz, A.M., and Schekman, R. (2019). Distinct mechanisms of microRNA sorting into cancer cell-derived extracellular vesicle subtypes. eLife 8: e47544.
129 Thomas, R.S., Allen, B.C., Nong, A., Yang, L., Bermudez, E., and Clewell, H.J. 3RD, and Andersen, M.E. (2007). A method to integrate benchmark dose estimates with genomic data to assess the functional effects of chemical exposure. Toxicol. Sci. 98: 240–248.
130 Thompson, K.L., Boitier, E., Chen, T., Couttet, P., Ellinger-Ziegelbauer, H., Goetschy, M., Guillemain, G., Kanki, M., Kelsall, J., Mariet, C., De La Moureyre-Spire, C., Mouritzen, P., Nassirpour, R., O’Lone, R., Pine, P.S., Rosenzweig, B.A., Sharapova, T., Smith, A., Uchiyama, H., Yan, J., Yuen, P.S., and Wolfinger, R. (2016). Absolute measurement of cardiac injury-induced micrornas in biofluids across multiple test sites. Toxicol. Sci. 154: 115–125.
131 Thulin, P., Hornby, R.J., Auli, M., Nordahl, G., Antoine, D.J., Starkey Lewis, P., Goldring, C.E., Park, B.K., Prats, N., Glinghammar, B., and Schuppe-Koistinen, I. (2017). A longitudinal assessment of miR-122 and GLDH as biomarkers of drug-induced liver injury in the rat. Biomarkers 22: 461–469.
132 Tomasetti, M., Gaetani, S., Monaco, F., Neuzil, J., and Santarelli, L. (2019). Epigenetic regulation of mirna expression in malignant mesothelioma: MiRNAs as biomarkers of early diagnosis and therapy. Front Oncol. 9: 1293.
133 Tribolet, L., Kerr, E., Cowled, C., Bean, A.G.D., Stewart, C.R., Dearnley, M., and Farr, R.J. (2020). MicroRNA biomarkers for infectious diseases: From basic research to biosensing. Front Microbiol. 11: 1197.
134 Tsamou, M., Vrijens, K., Madhloum, N., Lefebvre, W., Vanpoucke, C., and Nawrot, T.S. (2018). Air pollution-induced placental epigenetic alterations in early life: A candidate miRNA approach. Epigenetics 13: 135–146.
135 Tumolo, M.R., Panico, A., De Donno, A., Mincarone, P., Leo, C.G., Guarino, R., Bagordo, F., Serio, F., Idolo, A., Grassi, T., and Sabina, S. (2020). The expression of microRNAs and exposure to environmental contaminants related to human health: A review. Int. J. Environ. Health Res. (online, May 12): 1–23. doi: 10.1016/j.hoc.2021.05.005.
136 Turchinovich, A., Drapkina, O., and Tonevitsky, A. (2019). Transcriptome of Extracellular Vesicles: State-of-the-Art. Front Immunol. 10: 202.
137 Turchinovich, A., Weiz, L., Langheinz, A., and Burwinkel, B. (2011). Characterization of extracellular circulating microRNA. Nucleic Acids Res. 39: 7223–7233.
138 Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J.J., and Lotvall, J.O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9: 654–659.
139 Van Pottelberge, G.R., Mestdagh, P., Bracke, K.R., Thas, O., Van Durme, Y.M., Joos, G.F., Vandesompele, J., and Brusselle, G.G. (2011). MicroRNA expression in induced sputum of smokers and patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 183: 898–906.
140 Vandana Saini, R.D, Suneja, S., Gangopadhyay, S., and Kaur, C. (2021). Can microRNA become next-generation tools in molecular diagnostics and therapeutics? A systematic review. Egypt. J. Med. Hum. Genet. 22: 1–9.
141 Vickers, K.C., Palmisano, B.T., Shoucri, B.M., Shamburek, R.D., and Remaley, A.T. (2011). MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 13: 423–433.
142 Vigneron, N., Meryet-Figuiere, M., Guttin, A., Issartel, J.P., Lambert, B., Briand, M., Louis, M.H., Vernon, M., Lebailly, P., Lecluse, Y., Joly, F., Krieger, S., Lheureux, S., Clarisse, B., Leconte, A., Gauduchon, P., Poulain, L., and Denoyelle, C. (2016). Towards a new standardized method for circulating miRNAs profiling in clinical studies: Interest of the exogenous normalization to improve miRNA signature accuracy. Mol. Oncol. 10: 981–992.
143 Villarroya-Beltri, C., Gutierrez-Vazquez, C., Sanchez-Cabo, F., Perez-Hernandez, D., Vazquez, J., Martin-Cofreces, N., Martinez-Herrera, D.J., Pascual-Montano, A., Mittelbrunn, M., and Sanchez-Madrid, F. (2013). Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 4: 2980.
144 Vogt, J., Sheinson, D., Katavolos, P., Irimagawa, H., Tseng, M., Alatsis, K.R., and Proctor, W.R. (2019). Variance component analysis of circulating miR-122 in serum from healthy human volunteers. PLoS One 14: e0220406.
145 Vrijens, K., Bollati, V., and Nawrot, T.S. (2015). MicroRNAs as potential signatures of environmental exposure or effect: A systematic review. Environ. Health Perspect. 123: 399–411.
146 Wallace, D.R., Taalab, Y.M., Heinze, S., Tariba Lovakovic, B., Pizent, A., Renieri, E., Tsatsakis, A., Farooqi, A.A., Javorac, D., Andjelkovic, M., Bulat, Z., Antonijevic, B., and Buha Djordjevic, A. (2020). Toxic-metal-induced alteration in miRNA expression profile as a proposed mechanism for disease development. cells 9.
147 Wang, G.K., Zhu, J.Q., Zhang, J.T., Li, Q., Li, Y., He, J., Qin, Y.W., and Jing, Q. (2010a). Circulating microRNA: A novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur. Heart. J. 31: 659–666.
148 Wang, J., Zhang, Y., Zhang, W., Jin, Y., and Dai, J. (2012). Association of perfluorooctanoic acid with HDL cholesterol and circulating miR-26b and miR-199-3p in workers of a fluorochemical plant and nearby residents. Environ. Sci. Technol. 46: 9274–9281.
149 Wang, K., Zhang, S., Marzolf, B., Troisch, P., Brightman, A., Hu, Z., Hood, L.E., and Galas, D.J. (2009). Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc. Natl. Acad. Sci. USA 106: 4402–4407.
150 Wang, M., Ye, Y., Qian, H., Song, Z., Jia, X., Zhang, Z., Zhou, J., and Ni, C. (2010b). Common genetic variants in pre-microRNAs are associated with risk of coal workers’ pneumoconiosis. J. Hum. Genet. 55: 13–17.
151 Wang, T., Xu, H., Qi, M., Yan, S., and Tian, X. (2018). miRNA dysregulation and the risk of metastasis and invasion in papillary thyroid cancer: A systematic review and meta-analysis. Oncotarget 9: 5473–5479.
152 Wang, W., Zhang, H., Duan, X., Feng, X., Wang, T., Wang, P., Ding, M., Zhou, X., Liu, S., Li, L., Liu, J., Tang, L., Niu, X., Zhang, Y., Li, G., Yao, W., and Yang, Y. (2019). Association of genetic polymorphisms of miR-145 gene with telomere length in omethoate-exposed workers. Ecotoxicol. Environ. Saf. 172: 82–88.
153 Weber, D.G., Johnen, G., Bryk, O., Jockel, K.H., and Bruning, T. (2012). Identification of miRNA-103 in the cellular fraction of human peripheral blood as a potential biomarker for malignant mesothelioma–a pilot study. PLoS One 7: e30221.
154 Weber, J.A., Baxter, D.H., Zhang, S., Huang, D.Y., Huang, K.H., Lee, M.J., Galas, D.J., and Wang, K. (2010). The microRNA spectrum in 12 body fluids. Clin. Chem. 56: 1733–1741.
155 Webster, A.F., Chepelev, N., Gagne, R., Kuo, B., Recio, L., Williams, A., and Yauk, C.L. (2015). Impact of genomics platform and statistical filtering on transcriptional benchmark doses (BMD) and multiple approaches for selection of chemical point of departure (PoD). PLoS One 10: e0136764.
156 Weldon, B.A., Shubin, S.P., Smith, M.N., Workman, T., Artemenko, A., Griffith, W.C., Thompson, B., and Faustman, E.M. (2016). Urinary microRNAs as potential biomarkers of pesticide exposure. Toxicol. Appl. Pharmacol. 312: 19–25.
157 World Health Organization and International Programme on Chemical Safety (1993). Biomarkers and Risk Assessment: Concepts and Principles, published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization. World Health Organization. https://apps.who.int/iris/handle/10665/39037.
158 Xu, M., Yu, Z., Hu, F., Zhang, H., Zhong, L., Han, L., An, Y., Zhu, B., and Zhang, H. (2017). Identification of differential plasma miRNA profiles in Chinese workers with occupational lead exposure. Biosci. Rep. 37.
159 Yamamoto, M., Singh, A., Sava, F., Pui, M., Tebbutt, S.J., and Carlsten, C. (2013). MicroRNA expression in response to controlled exposure to diesel exhaust: Attenuation by the antioxidant N-acetylcysteine in a randomized crossover study. Environ. Health Perspect. 121: 670–675.
160 Yanshina, D.D., Kossinova, O.A., Gopanenko, A.V., Krasheninina, O.A., Malygin, A.A., Venyaminova, A.G., and Karpova, G.G. (2018). Structural features of the interaction of the 3ʹ-untranslated region of mRNA containing exosomal RNA-specific motifs with YB-1, a potential mediator of mRNA sorting. Biochimie. 144: 134–143.
161 Yauk, C.L., Rowan-carroll, A., Stead, J.D., and Williams, A. (2010). Cross-platform analysis of global microRNA expression technologies. BMC Genom. 11: 330.
162 Yu, H.W. and Cho, W.C. (2015). The role of microRNAs in toxicology. Arch. Toxicol. 89: 319–325.
163 Yuan, H., Yuan, M., Tang, Y., Wang, B., and Zhan, X. (2018). MicroRNA expression profiling in human acute organophosphorus poisoning and functional analysis of dysregulated miRNAs. Afr. Health Sci. 18: 333–342.
164 Zhang, Y., Liu, D., Chen, X., Li, J., Li, L., Bian, Z., Sun, F., Lu, J., Yin, Y., Cai, X., Sun, Q., Wang, K., Ba, Y., Wang, Q., Wang, D., Yang, J., Liu, P., Xu, T., Yan, Q., Zhang, J., Zen, K., and Zhang, C.Y. (2010). Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol. Cell 39: 133–144.
165 Zhou, S.S., Jin, J.P., Wang, J.Q., Zhang, Z.G., Freedman, J.H., Zheng, Y., and Cai, L. (2018). miRNAS in cardiovascular diseases: Potential biomarkers, therapeutic targets and challenges. Acta Pharmacol. Sin. 39: 1073–1084.
166 Zhou, X., Wang, L., Zou, W., Chen, X., Roizman, B., and Zhou, G.G. (2020). hnRNPA2B1 Associated with recruitment of RNA into exosomes plays a key role in herpes simplex virus 1 release from infected cells. J. Virol. 94 (3): e00367-20.