Читать книгу Core Microbiome - Группа авторов - Страница 13

References

Оглавление

1 Chitme, H.R., Chandra, R., and Kaushik, S. (2003). Studies on antidiarrheal activity of Calotropis gigantea R. Br. in experimental animals. Journal of Pharmacy & Pharmaceutical Sciences 7: 70–75.

2 Kim, H.S. (2005). Do not put too much value on conventional medicines. Journal of Ethnopharmacology 100 (1–2): 37–39.

3 Cowan, M.M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews 12 (4): 564–582.

4 Kalemba, D. and Kunicka, A. (2003). Antibacterial and antifungal properties of essential oils. Current Medicinal Chemistry 10 (10): 813–829.

5 Kharwar, R.N., Sharma, V.K., Mishra, A., Kumar, J., Singh, D.K., Verma, S.K., Gond, S.K., Kumar, A., Kaushik, N., and Revuru, B. (2020). Harnessing the phytotherapeutic treasure troves of the ancient medicinal plant Azadirachta indica (Neem) and associated endophytic microorganisms. Planta Medica 86: 906–940.

6 Chattopadhyay, R.R., Chattopadhyay, R.N., and Maitra, S.N. (1993). Possible mechanism of anti-inflammatory activity of Azadirachta indica leaf extract. Indian Journal of pharmacology 25: 99–100.

7 Brahmachari, G. (2004). Neem-an omnipotent plant: A retrospection. Chem Biochem 5: 408–421.

8 Jalaluddin, M., Rajasekaran, U.B., Paul, S., Dhanya, R.S., Sudeep, C.B., and Adarsh, V.J. (2017). Comparative evaluation of neem mouthwash on plaque and gingivitis: A double-blind crossover study. The Journal of Contemporary Dental Practice 18: 567–571.

9 Sarah, R., Tabassum, B., Idrees, N., and Hussain, M.K. (2019). Bio-active Compounds Isolated from Neem Tree and Their Applications. In: Natural Bio-active Compounds, (eds.M.Akhtar, M.Swamy and U.Sinniah). Singapore: Springer. https://doi.org/10.1007/978-981-13-7154-7_1

10 10 Jerobin, J., Makwana, P., Kumar, R.S.S., Sundaramoorthy, R., Mukharjee, A., and Chandrasekaran, N. (2015). Antibacterial activity of neem nanoemulsion and its toxicity assessment on human lymphocytes in vitro. International Journal of Nanomedicine 10 (77): 86.

11 11 Almas, K. (1999). The antimicrobial effects of extracts of Azadirachta indica (Neem) and Salvadora persica (Arak) chewing sticks. Indian Journal of Dental Research. 10 (1): 23–26.

12 12 Sai Ram, M. et al. (2000). Effect of Kombucha tea on Chromate(VI)-induced oxidative stress in albino rats. Journal of Ethnopharmacology 71 (1–2): 235-40.

13 13 Baswa, M., Rath, C.C., Dash, S.K., and Mishra, R.K. (2001). Antibacterial activity of Karanj (Pongamia pinnata) and Neem (Azadirachta indica) seed oil: a preliminary report. Microbios 105 (412): 183–189.

14 14 Compant, S., Samad, A., Faist, H., and Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of Advanced Research 19: 29–37.

15 15 Mengoni, A., Pini, F., Huang, L.N., Shu, W.S., and Bazzicalupo, M. (2009). Plant-by-plant variations of bacterial communities associated with leaves of the nickel hyperaccumulator Alyssum bertolonii desv. Microbial Ecology 58: 660–667.

16 16 Mengoni, A., Schat, H., and Vangronsveld, J. (2010). Plants as extreme environments? Ni-resistant bacteria and Ni-hyperaccumulators of serpentine flora. Plant and Soil 331: 5–16.

17 17 Thijs, S., Sillen, W., Rineau, F., Weyens, N., and Vangronsveld, J. (2016). Towards an enhanced understanding of plant-microbiome interactions to improve phytoremediation: Engineering the metaorganism. Frontiers in Microbiology 7: 341.

18 18 Zhao, J., Chan, T., Mou, Y., and Zhou, L. (2011). Plant-derived bioactive compounds produced by endophytic fungi. Mini Reviews in Medicinal Chemistry 11: 159–168. DOI: 10.2174/138955711794519492

19 19 Morsy, N.M. (2014). Phytochemical analysis of biologically active constituents of medicinal plants. Main Group Chemistry 13: 7–21. DOI: 10.3233/MGC-130117

20 20 Qi, X., Wang, E., Xing, M., Zhao, W., and Chen, X. (2012). Rhizosphere and non-rhizosphere bacterial community composition of the wild medicinal plant Rumex patientia. World Journal of Microbiology and Biotechnology 28: 2257–2265. DOI: 10.1007/s11274-012-1033-2

21 21 Philippot, L., Raaijmakers, J.M., Lemanceau, P., and van der Putten, W.H. (2013). Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews Microbiology 11: 789–799. DOI: 10.1038/nrmicro3109

22 22 Chaparro, J.M., Badri, D.V., and Vivanco, J.M. (2014). Rhizosphere microbiome assemblage is affected by plant development. The ISME Journal 8: 790–803. DOI: 10.1038/ismej.2013.196

23 23 Egamberdieva, D., Berg, G., Lindstrom, K., and Rasanen, L. (2010). Root colonizing Pseudomonas spp. improve growth and symbiosis performance of fodder Galega (Galega orientalis LAM) grown in potting soil. European Journal of Soil Biology 46: 269–272. DOI: 10.1016/j.ejsobi.2010.01.005

24 24 Egamberdieva, D., Kucharova, Z., Davranov, K., Berg, G., Makarova, N., Azarova, T. et al. (2011). Bacteria able to control foot and root rot and to promote the growth of cucumber in salinated soils. Biology and Fertility of Soils 47: 197–205. DOI: 10.1007/s00374-010-0523-3

25 25 Malfanova, N., Kamilova, F., Validov, S., Shcherbakov, A., Chebotar, V., Tikhonovich, I. et al. (2011). Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Microbial Biotechnology 4: 523–532. DOI: 10.1111/j.1751-7915.2011.00253.x

26 26 Sessitsch, A., Kuffner, M., Kidd, P., Vangronsveld, J., Wenzel, W., Fallmann, K. et al. (2013). The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biology and Biochemistry 60: 182–194. DOI: 10.1016/j.soilbio.2013.01.012

27 27 Berg, G., Grube, M., Schloter, M., and Smalla, K. (2014). Unraveling the plant microbiome: Looking back and future perspectives. Frontiers in Microbiology 5: 148. DOI: 10.3389/fmicb.2014.00148

28 28 Köberl, M., Schmidt, R., Ramadan, E.M., Bauer, R., and Berg, G. (2014). The microbiome of medicinal plants: Diversity and importance for plant growth, quality and health. Frontiers in Microbiology 4: 400. DOI: 10.3389/fmicb.2013.00400

29 29 Beneduzi, A., Ambrosini, A., and Passaglia, L.M.P. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology 35: 1044–1051. DOI: 10.1590/S1415-47572012000600020

30 30 Weller, D.M., Raaijmakers, J.M., McSpadden Gardner, B.B., and Thomashow, L.S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology 40: 308–348. DOI: 10.1146/annurev.Phyto.40.030402.110010

31 31 Berendsen, R.L., Pieterse, C.M.J., and Bakker, P.A.H.M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science 17: 478–486. DOI: 10.1016/j.plants.2012.04.001

32 32 Köberl, M., Ramadan, E.M., Adam, M., Cardinale, M., Hallmann, J., Heuer, H. et al. (2013). Bacillus and Streptomyces were selected as broad-spectrum antagonists against soilborne pathogens from arid areas in Egypt. FEMS microbiology letters 342: 168–178. DOI: 10.1111/1574-6968.12089

33 33 Kumar, G., Kanaujia, N., and Bafana, A. (2012). Functional and phylogenetic diversity of root-associated bacteria of Ajuga bracteosa in Kangra valley. Microbiological Research 167: 220–225. DOI: 10.1016/j.micres.2011.09.001

34 34 Hardoim, P.R., van Overbeek, L.S., Berg, G., Pirttilä, A.M., Compante, S., Campisano, A. et al. (2015). The hidden World within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews 79: 293–320. DOI: 10.1128/MMBR.00050-14

35 35 Chandra, S. (2012). Endophytic fungi: Novel sources of anticancer lead molecules. Applied Microbiology and Biotechnology 95: 47–59. DOI: 10.1007/s00253-012-4128-7

36 36 Pal, K.K. and McSpadden Gardener, B. (2006). Biological Control of Plant Pathogens. Plant Health Instr.

37 37 Lecomte, C., Alabouvette, C., Edel-Hermann, V., Robert, F., and Steinberg, C. (2016). Biological control of ornamental plant diseases caused by Fusarium oxysporum: A review. Biological Control 101: 17–30.

38 38 Eljounaidi, K., Lee, S.K., and Bae, H. (2016). Bacterial endophytes as potential biocontrol agents of vascular wilt diseases—Review and future prospects. Biological Control 103: 62–68.

39 39 Latz, M.A.C., Jensen, B., Collinge, D.B., and Jørgensen, H.J.L. (2018). Endophytic fungi as biocontrol agents: Elucidating mechanisms in disease suppression. Plant Ecology & Diversity 11: 555–567.

40 40 De Silva, N.I., Brooks, S., Lumyong, S., and Hyde, K.D. (2019). Use of endophytes as biocontrol agents. Fungal Biology Reviews 33: 133–148.

41 41 Morales-Cedeño, L.R., delCarmenOrozco-Mosqueda, M., Loeza-Lara, P.D., Parra-Cota, F.I., de losSantos-Villalobos, S., and Santoyo, G. (2021). Plant growth-promoting bacterial endophytes as biocontrol agents of pre-and post-harvest diseases: Fundamentals, methods of application and future perspectives. Microbiological Research 242: 126612.

42 42 Santoyo, G., delOrozco-mosqueda, M.C., and Govindappa, M. (2012). Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: A review. Biocontrol Science and Technology 22: 855–872.

43 43 Dobbelaere, S., Vanderleyden, J., and Okon, Y. (2003). Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences 22: 107–149.

44 44 Gray, E.J. and Smith, D.L. (2005). Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signaling processes. Soil Biology and Biochemistry 37: 395–412.

45 45 Schroth, M.N. and Hancock, J.G. (1982). Disease-suppressive soil and root-colonizing bacteria. Science 216: 1376–1381.

46 46 Kloepper, J.W., Lifshitz, R., and Zablotowicz, R.M. (1989). Free-living bacterial inocula for enhancing crop productivity. Trends in Biotechnology 7: 39–43.

47 47 Podile, A.R. and Kishore, G.K. (2006). Plant growth-promoting rhizobacteria. In: Plant-Associated Bacteria, (ed. S.S.Gnanamanickam), 195–230. Netherlands: Springer.

48 48 Glick, B.R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology 41: 109–117.

49 49 Castronovo, L.M., Vassallo, A., Mengoni, A., Miceli, E., Bogani, P., Firenzuoli, F., Fani, R., and Maggini, V. (2021). Medicinal plants and their bacterial microbiota: A review on antimicrobial compounds production for plant and human health. Pathogens 10 (106). https://doi.org/10.3390/pathogens10020106

50 50 Verma, V.C., Gond, S.K., Kumar, A., Kharwar, R.N., and Strobel, G. (2007). The endophytic mycoflora of bark, leaf, and stem tissues of Azadirachta indica A. Juss (Neem) from Varanasi (India). Microbial Ecology 54: 119–125.

51 51 Verma, V.C., Gond, S.K., Kumar, A., Kharwar, R.N., Boulanger, L.A. and Strobel, G.A. (2011). Endophytic Fungal Flora from Roots and Fruits of an Indian Neem Plant Azadirachta indica A. Juss., and Impact of Culture Media on their Isolation. Indian Journal of Microbiology 51: 469–476.

52 52 James, T.Y., Kauff, F., Schoch, C.L., Matheny, P.B., Hofstetter, V., Cox, C.J., Celio, G., Gueidan, C., Fraker, E., and Miadlikowska, J. et al. (2006). Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443: 818–822.

53 53 Maharachchikumbura, S.S., Hyde, K.D., Jones, E.G., McKenzie, E.H., Huang, S.K., Abdel-Wahab, M.A., Daranagama, D.A., Dayarathne, M., D’souza, M.J., and Goonasekara, I.D. et al. (2015). Towards a natural classification and backbone tree for Sordariomycetes. Fungal Diversity 72: 199–301.

54 54 Chutulo, E.C. and Chalannavar, R.K. (2018). Endophytic Mycoflora and Their Bioactive Compounds from Azadirachta Indica: A Comprehensive Review. Journal of Fungi 4 (2): 42.

Core Microbiome

Подняться наверх