Читать книгу Industry 4.0 Vision for the Supply of Energy and Materials - Группа авторов - Страница 77
References
Оглавление1 1 Roblek, V., Bach, M.P., Mesko, M., and Berton- Celj, A. (May 2013). The impact of social media to value added in knowledge-based industries. Kybernetes 42 (4): 554–568.
2 2 Schlechtendahl, J., Keinert, M., Kretschmer, F., Lechler, A., and Verl, A. (Feb 2015). Making existing production systems industry 4.0- ready. Prod. Eng. 9: 143–148.
3 3 Almada-Lobo, F. (2016). The Industry 4.0 revolution and the future of manufacturing execution systems (MES). J. Innov. Manag. 3: 16–21.
4 4 Kagermann, H., Lukas, W.-D., and Wolfgang, W. (2011). Industrie 4.0 – mitdem Internet er dinge auf dem wegzur 4. Industriellen revolution. VDI Nachrichten 13 (1): 2–3.
5 5 Kagermann, H., Wahlster, W., and Helbig, J. (Apr 2013). Recommendations for Implementing the Strategic Initiative Industrie 4.0 – Securing the Future of German Manufacturing Industry. Final report of the Industrie 4.0 working group, ACATECH – National Academy of Science and Engineering, Miinchen. https://www.din.de/blob/76902/e8cac883f42bf28536e7e8165993f1fd/recommendations-for-implementing-industry-4-0-data.pdf.
6 6 Horizon. (2020). European commission. Call for factories of the future. https://ec.europa.eu/programmes/horizon2020/en/news/call-factories-future-1.
7 7 European Factories of the Future Research Association (EFFRA). Factories of the Future. https://www.effra.eu/factories-future.
8 8 Evans, P. and Annunziata, M. (Jan 2012). Industrial Internet: Pushing the boundaries of minds and machines. General Electric. https://www.ge.com/news/sites/default/files/5901.pdf.
9 9 Industrial Valuechain Initiative. What is IVI (Industrial Value Chain Initiative)? https://iv-i.org/wp/en/about-us/whatsivi.
10 10 Pereira, A.C. and Romero, F. (2017). A review of the meanings and the implications of the industry 4.0 concept. Procedia Manuf. 13: 1206–1214.
11 11 Schmidt, R., Mohring, M., Harting, R.-C., Reichstein, C., Neumaier, P., and Jozinovic, P. (Jun 2015). Industry 4.0 – potentials for creating smart products: Empirical research results. In: Business Information Systems (ed. W. Abramowicz), 16–27. Springer.
12 12 Kagermann, H. (2015). Change through digitization—value creation in the age of Industry 4.0. In: Management of Permanent Change (ed. H. Albach, H. Meffert, A. Pinkwart, and R. Reichwald), 23–45. Springer Fachmedien Wiesbaden.
13 13 Radziwon, A., Bilberg, A., Bogers, M., and Madsen, E.S. (2014). The smart factory: Exploring adaptive and flexible manufacturing solutions. Procedia Eng. 69: 1184–1190.
14 14 Weyer, S., Schmitt, M., Ohmer, M., and Gorecky, D. (2015). Towards industry 4.0 – standardization as the crucial challenge for highly modular, multi-vendor production systems. IFAC- PapersOnLine 48 (3): 579–584.
15 15 Qin, J., Liu, Y., and Grosvenor, R. (2016). A categorical framework of manufacturing for industry 4.0 and beyond. Procedia CIRP 52: 173–178.
16 16 Glova, J., Sabol, T., and Vajda, V. (2014). Business models for the Internet of things environment. Procedia Econ. Fin. 15: 1122–1129.
17 17 Romero, D., Bernus, P., Noran, O., Stahre, J., and Fast-Berglund, A. (Sep 2016). The operator 4.0: human cyber-physical systems & adaptive automation towards human-automation symbiosis work systems. In: Advances in Production Management Systems. Initiatives for a Sustainable World (ed. I. Naas, O. Vendrametto, J.M. Reis, R.F. Goncalves, M.T. Silva, V.C. Gregor, and D. Kiritsis), 677–686. Springer International Publishing.
18 18 Hahn, T. (Aug 2014). Future of manufacturing: view on enabling technologies. Siemens Corporate Technology. https://opcfoundation.org/wp-content/uploads2014/09/3_140805_OPC_Foundation_Redmond_v7a_incl_Siemens_Slides_20140731.pdf.
19 19 Taiwan, D. (Sep 2015). Challenges and Solutions for the Digital Transformation and Use of Exponential. https://www2.deloitte.com/tw/en/pages/manufacturing/articles/industry4-0.html.
20 20 Posada, J., Toro, C., Barandiaran, I., Oyarzun, D., Stricker, D., De Amicis, R., Pinto, E. B., Eisert, P., Dollner, J., and Vallarino, I. (2015). Visual computing as a key enabling technology for Industrie 4.0 and industrial Internet. IEEE Comput. Graph. Appl. 35 (2): 26–40.
21 21 Zhou, K., Liu, T., and Lifeng, Z. (2015). Industry 4.0: towards Future Industrial Opportunities and Challenges. 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 2147–2152.
22 22 Hermann, M., Pentek, T., and Otto, B. (2016). Design Principles for Industrie 4.0 Scenarios. 2016 49th Hawaii International Conference on System Sciences (HICSS), 3928–3937.
23 23 Lee, J., Bagheri, B., and Kao, H.-A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett. 3: 18–23.
24 24 Francalanza, E., Borg, J., Constantinescu, C. (2017). A knowledge-based tool for designing cyber physical production systems. Comput. Ind. 84: 39–58.
25 25 Xu, L.D., He, W., and Li, S. (2014). Internet of Things in Industries: a Survey. IEEE Trans. Industr. Inform. 10 (4): 2233–2243.
26 26 Haller, S., Karnouskos, S., and Schroth, C. (2009). The Internet of things in an enterprise context. In: Future Internet – FIS 2008 (ed. J. Domingue, D. Fensel, and P. Traverso), 14–28. Springer Berlin Heidelberg.
27 27 Mourtzis, D., Vlachou, E., and Milas, N. (2016). Industrial big data as a result of IoT adoption in manufacturing. Procedia CIRP 55: 290–295.
28 28 Sisinni, E., Saifullah, A., Han, S., Jennehag, U., and Gidlund, M. (2018). Industrial Internet of things: Challenges, opportunities, and directions. IEEE Trans. Industr. Inform. 14 (11): 4724–4734.
29 29 Baida, Z., Gordijn, J., and Omelayenko, B. (2004). A shared service terminology for online service provisioning. Proceedings of the 6th International Conference on Electronic Commerce, ICEC’04, 1–10, New York, NY. Association for Computing Machinery.
30 30 Equipment for Potentially Explosive Atmospheres (ATEX). https://ec.europa.eu/growth/sectors/mechanical-engineering/atex_en.
31 31 National Electrical Code@. National Fire Protection Association- NFPA 70@. https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=70.
32 32 Bajracharya, R., Shrestha, R., Zikria, Y.B., and Kim, S.W. (2018). LTE in the unlicensed spectrum: A survey. IETE Tech. Rev. 35 (1): 78–90.
33 33 3GPP. (2015). Feasibility study on licensed-assisted access to unlicensed spectrum (Release 13). TR 36.889, 3rd Generation Partnership Project (3GPP). https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2579.
34 34 Nadas, J.P.B., Zhao, G., Souza, R.D., and Muhammad, A.I. (2020). Ultra reliable low latency communications as an enabler for industry automation. In: Wireless Automation as an Enabler for the Next Industrial Revolution (ed. S. Hussain, M.A. Imran, and Q.H. Abbasi), 89–107. John Wiley & Sons, Ltd.
35 35 Karaki, R., Cheng, J., Obregon, E., Mukherjee, A., Kang, D.H., Falahati, S., Koorapaty, H., and Drugge, O. (2017). Uplink Performance of Enhanced Licensed Assisted Access (eLAA) in Unlicensed Spectrum. In 2017 IEEE Wireless Communications and Networking Conference (WCNC), 1–6.
36 36 Bajracharya, R., Shrestha, R., and Jung, H. (May 2020). Future is unlicensed: Private 5G unlicensed network for connecting industries of future. Sensors 20 (10): 2774.
37 37 Lu, X., Petrov, V., Moltchanov, D., Andreev, S., Mahmoodi, T., and Dohler, M. (2019). 5G-U: Conceptualizing integrated utilization of licensed and unlicensed spectrum for future IoT. IEEE Commun. Mag. 57 (7): 92–98.
38 38 Tombaz, S., Frenger, P., Athley, F., Semaan, E., Tidestav, C., and Fu- Ruskar, A. (2015). Energy Performance of 5G-NX Wireless Access Utilizing Massive Beamforming and an Ultra-Lean System Design. In 2015 IEEE Global Communications Conference (GLOBECOM), 1–7.
39 39 Torsner, J., Dovstam, K., Miklos, G., Skubic, B., Mildh, G., Mecklin, T., Sandberg, J., Nyqvist, J., Neander, J., Martinez, C., Zhang, B., and Wan, J. (Nov 2015). Industrial Remote Operation: 5G Rises to the Challenge. Ericsson Technology Review. https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/industrial-remote-operation-5g-rises-to-the-challenge.
40 40 Sahlli, E., Ismail, M., Nordin, R., and Abdulah, N. (Jun 2017). Beamforming techniques for massive MIMO systems in 5G: Overview, classification, and trends for future research. Front. Inf. Technol. Electron. Eng. 18: 753–772.
41 41 Anandhi, S., Anitha, R., and Sureshkumar, V. (2019). IoT enabled RFID Authentication and secure object tracking system for smart logistics. Wirel. Pers. Commun. 104 (2): 543–560.
42 42 Growindhager, B., Stocker, M., Rath, M., Boano, C.A., and Romer, K. (2019). SnapLoc: an Ultra-Fast UWB-Based Indoor Localization System for an Unlimited Number of Tags. In: 2019 18th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), 61–72.
43 43 Lee, C.K.M., Ip, C.M., Park, T., and Chung, S.Y. (2019). A Bluetooth Location- Based Indoor Positioning System for Asset Tracking in Warehouse. In: 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 1408–1412.
44 44 Thales. Asset Tracking. https://www.thalesgroup.com/en/markets/digital-identity-and-security/iot/industries/asset-tracking.
45 45 Frotzscher, A., Wetzker, U., Bauer, M., Rentschler, M., Beyer, M., Elspass, S., and Klessig, H. (2014). Requirements and Current Solutions of Wireless Communication in Industrial Automation. In: 2014 IEEE International Conference on Communications Workshops (ICC), 67–72.
46 46 PROFIBUS & PROFINET International (PI). (Apr 2016). PROFISafe. https://www.profibus-profinet.cz/images/Dokumenty/PROFINET/2812_PROFIsafe_SystemDescription_ENG__2016_web.pdf.
47 47 ODVA. CIP Safety™—common Industrial Protocol. ODVA, Inc. (Open DeviceNet Vendors Association). https://www.odvaorg/technology-standards/distinct-cip-services/cip-safety/.
48 48 Davis, J. (Dec 2008). Top Five Selection Criteria for Industrial Wireless Technologies. Cypress Semiconductor Corp. https://www.eetimes.com/top-five-selection-criteria-for-industrial-wireless-technologies/#.
49 49 Seferagic, A., Famaey, J., Eli, D.P., and Hoebeke, J. (Jan 2020). Survey on wireless technology trade-offs for the industrial Internet of things. Sensors 20 (2): 488.
50 50 Zhu, J., Zou, Y., and Zheng, B. (2017). Physical-layer security and reliability challenges for industrial wireless sensor networks. IEEE Access 5: 5313–5320.
51 51 Rao, S.K. and Prasad, R. (May 2018 ). Impact of 5G technologies on industry 4.0. Wirel. Pers. Commun. 100 (1): 145–159.
52 52 Park, P., Fischione, C., Bonivento, A., Johansson, K.H., and Sangiovanni-Vincent, A. (2011). Breath: An adaptive protocol for industrial control applications using wireless sensor networks. IEEE Trans. Mob. Comput. 10 (6): 821–838.
53 53 Porter, M.E. and Heppelmann, J.E. (Nov 2014). How smart, connected products are transforming competition. Harvard Business Review. https://hbr.org/2014/11/how-smart-connected-products-are-transforming-competition.
54 54 Huang, V.K.L., Pang, Z., Chen, C.A., and Tsang, K.F. (2018). New trends in the practical deployment of industrial wireless: from noncritical to critical use cases. IEEE Ind. Electron. Mag. 12 (2): 50–58.
55 55 Liu, Y., Kashef, M., Lee, K.B., Benmohamed, L., and Candell, R. (2019). Wireless network design for emerging IIoT applications: Reference framework and use cases. Proc. IEEE 107 (6): 1166–1192.
56 56 Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., and Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17 (4): 2347–2376.
57 57 Palattella, M.R., Dohler, M., Grieco, A., Rizzo, G., Torsner, J., Engel, T., and Ladid, L. (2016). Internet of things in the 5G Era: Enablers, architecture, and business models. IEEE J. Sel. Areas Commun. 34 (3): 510–527.
58 58 IEC. (Dec 2015). Industrial Networks-Wireless Communication Network and Communication Profiles-WIA-PA. Standard IEC 62601, International Electrotechnical Commission (IEC). https://webstore.iec.ch/publication/23902.
59 59 IEEE Standard for Low-Rate Wireless Networks. (2016). IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011), 1–709.
60 60 Palattella, M.R., Accettura, N., Vilajosana, X., Watteyne, T., Grieco, L.A., Boggia, G., and Dohler, M. (2013). Standardized protocol stack for the Internet of (important) things. IEEE Commun. Surv. Tutor. 15 (3): 1389–1406.
61 61 Shi, K., Zhang, L., Zhiying, Q., Tong, K., Chen, H., and Berder, O. (Jan 2019). Transmission scheduling of periodic real-time traffic in IEEE 802.15.4e TSCH-based industrial mesh networks. Wireless Communications and Mobile Computing.
62 62 Pister, K. and Doherty, L. (2008). TSMP: Time Synchronized Mesh Protocol. Proceeding of the IASTED International Symposium- Distributed Sensor Networks, 391, 61. https://people.eecs.berkeley.edu/~pister/publications/2008/TSMP%20DSN08.pdf.
63 63 IEC. (Mar 2016). Industrial Communication Networks – Wireless Communication Network and Communication Profiles – WirelessHART™. Standard IEC 62591, International Electrotechnical Commission (IEC). https://webstore.iec.ch/publication/24433.
64 64 IEC. (Oct 2014). Industrial networks – Wireless communication network and communication profiles – ISA 100.11a. Standard IEC 62734, International Electrotechnical Commission (IEC). https://webstore.iec.ch/publication/7409.
65 65 Dujovne, D., Watteyne, T., Vilajosana, X., and Thubert, P. (2014). 6TiSCH: deterministic IP-enabled industrial Internet (of things). IEEE Commun. Mag. 52 (12): 36–41.
66 66 Vilajosana, X., Pister, K., and Watteyne, T. (May 2017). RFC 8180 – Minimal IPv6 over the TSCH Mode of IEEE 802.15.4e (6TiSCH) Configuration. Internet Engineering Task Force (IETF). https://datatracker.ietf.org/doc/pdf/rfc8180.pdf.
67 67 Bartolomeu, P., Alam, M., Ferreira, J., and Fonseca, J.A. (2018). Supporting deterministic wireless communications in industrial IoT. IEEE Trans. Industr. Inform. 14 (9): 4045–4054.
68 68 Siekkinen, M., Hiienkari, M., Nurminen, J.K., and Nieminen, J. (2012). How Low Energy Is Bluetooth Low Energy? Comparative Measurements with ZigBee/802.15.4. In: 2012 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), 232–237.
69 69 IEEE. (2007). Approved IEEE Draft Amendment to IEEE Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Part 15.4: wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANS): amendment to Add Alternate Phy (Amendment of IEEE Std 802.15.4). IEEE Approved Std P802.15.4a/D7, January.
70 70 Lo Bello, L. and Toscano, E. (2009). Coexistence issues of multiple co-located IEEE 802.15.4/ZigBee networks running on adjacent radio channels in industrial environments. IEEE Trans. Industr. Inform. 5 (2): 157–167.
71 71 Lennvall, T., Svensson, S., and Hekland, F. (2008). A Comparison of WirelessHART and ZigBee for Industrial Applications. In: 2008 IEEE International Workshop on Factory Communication Systems, 85–88.
72 72 Zigbee Alliance, Zigbee PRO with Green Power. https://zigbeealliance.org/wp-content/uploads/2019/11/docs-09-5499-26-batt-zigbee-green-power-specification.pdf.
73 73 Radmand, P., Domingo, M., Singh, J., Arnedo, J, Talevski, A., Petersen, S., and Carlsen, S. (2010). ZigBee/ZigBee PRO Security Assessment Based on Compromised Cryptographic Keys. 2010 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 465–470.
74 74 Souza, G.B.D.C., Vieira, F.H.T., Lima, C.R., Deus, G.A.D.J., De Castro, M.S., De Araujo, S.G., and Vasques, T.L. (2016). Developing smart grids based on GPRS and ZigBee technologies using queueing modeling-based optimization algorithm. ETRI J. 38 (1): 41–51.
75 75 Hassan, S.M., Ibrahim, R., Bingi, K., Chung, T.D., and Saad, N. (2017). Application of wireless technology for control: A wirelesshart perspective. Procedia Comput. Sci. 105: 240–247.
76 76 Raza, S., Faheem, M., and Guenes, M. (2019). Industrial wireless sensor and actuator networks in industry 4.0: Exploring requirements, protocols, and challenges—A MAC survey. Int. J. Commun. Syst. 32 (15): e4074.
77 77 Nixon, M. and Round Rock, T. (Sep 2012). A Comparison of WirelessHART and ISA100. 11a. Emerson Process Management. https://www.emerson.com/documents/automation/white-paper-a-comparison-of-wirelesshart-isa100-11a-en-42598.pdf.
78 78 Liang, W., Zhang, X., Xiao, Y., Wang, F., Zeng, P., and Haibin, Y. (2011). Survey and Experiments of WIA-PA Specification of industrial wireless network. Wirel. Commun. Mob. Comput. 11 (8): 1197–1212.
79 79 IEEE 802.15 WPAN Task Group 1 (TG1). https://www.ieee802.org/15/pub/TG1.html.
80 80 Bruno, R., Conti, M., and Gregori, E. (2002). Bluetooth: Architecture, protocols and scheduling algorithms. Cluster Comput. 5 (2): 117–131.
81 81 Patti, G., Leonardi, L., and Lo Bello, L. (2016). A Bluetooth Low Energy RealTime Protocol for Industrial Wireless Mesh Networks. In: IECON 2016 – 42nd Annual Conference of the IEEE Industrial Electronics Society, 4627–4632.
82 82 Gomez, C., Oller, J., and Paradells, J. (Aug 2012). Overview and evaluation of Bluetooth low energy: An emerging low-power wireless technology. Sensors 12 (9): 11734–11753.
83 83 Baert, M., Rossey, J., Shahid, A., and Hoebeke, J. (Jul 2018). The Bluetooth mesh standard: An overview and experimental evaluation. Sensors 18 (8): 2409.
84 84 IEEE 802.11 Wireless Local Area Networks. https://www.ieee802.org/11.
85 85 Banos-Gonzalez, V., Afaqui, M., Lopez-Aguilera, E., and Garcia-Villegas, E. (Nov 2016). IEEE 802.11ah: A technology to face the IoT challenge. Sensors 16 (11): 1960.
86 86 Hazmi, A., Rinne, J., and Valkama, M. (2012). Feasibility Study of IEEE 802.11 ah Radio Technology for IoT and M2M Use Cases. In: 2012 IEEE Globecom Workshops, 1687–1692.
87 87 Siemens. (Oct 2020). Boost in Efficiency with WiFi6 – New WLAN Standard Makes It Easier to Handle Large Numbers of Participants. https://press.siemens.com/global/en/news/boost-efficiency-wi-fi-6.
88 88 Cavalcanti, D., Perez-Ramirez, J., Rashid, M.M., Fang, J., Galeev, M., and Stanton, K.B. (2019). Extending accurate time distribution and timeliness capabilities over the air to enable future wireless industrial automation systems. Proc. IEEE 107 (6): 1132–1152.
89 89 Ali, R., Kim, S.W., Kim, B.-S., and Park, Y. (2018). Design of MAC layer resource allocation schemes for IEEE 802.11ax: Future directions. IETE Tech. Rev. 35 (1): 28–52.
90 90 LoRa Alliance@, https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2578.
91 91 3GPP. (Jun 2013). Study on Provision of Low-Cost Machine-Type Communications (MTC) User Equipments (UEs) based on LTE (Release 12). TR 36.888, 3rd Generation Partnership Project (3GPP). https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2578.
92 92 3GPP. (Nov 2015). New WI proposal: NB-IoT (Release 13). RP 151619, 3rd Generation Partnership Project (3GPP). https://portal.3gpp.org/ngppapp/TdocList.aspx?meetingId=31198.
93 93 Mekki, K., Bajic, E., Chaxel, F., and Meyer, F. (2019). A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express 5 (1): 1–7.
94 94 Rebbeck, T., Mackenzie, M., and Afonso, N. (2014). Low-Powered Wireless Solutions Have the Potential to Increase the M2M Market by over 3 Billion Connections. Analysys Mason.
95 95 Huawei. CIoT: Cellular Internet of Things. https://carrier.huawei.com/en/products/wireless-network/lte/c-iot.
96 96 NWAVE. Nwave Smart Parking Company. https://www.nwave.io.
97 97 GSMA. (Dec 2015). GSMA Welcomes Mobile Industry Agreement on Technology Standards for Global Low Power Wide Area Market. https://www.gsma.com/newsroom/press-release/gsma-welcomes-mobile-industry-agreement-on-technology-standards.
98 98 Vangelista, L., Zanella, A., and Zorzi, M. (2015). Long-range IoT technologies: The dawn of LoRa. In: Future Access Enablers for Ubiquitous and Intelligent Infrastructures (ed. V. Atanasovski and A. Leon-Garcia), 51–58. Springer International Publishing.
99 99 Sforza, F. (2013). Communications System. US Patent US8406275B2, application filed 09 March 2010 and granted 26 March.
100 100 Reynders, B., and Pollin, S. (2016). Chirp Spread Spectrum as a Modulation Technique for Long Range Communication. In: 2016 Symposium on Communications and Vehicular Technologies (SCVT), 1–5.
101 101 Reynders, B., Meert, W., and Pollin, S. (2016). Range and Coexistence Analysis of Long Range Unlicensed Communication. In: 2016 23rd International Conference on Telecommunications (ICT), 1–6.
102 102 Petajajarvi, J., Mikhaylov, K., Pettissalo, M., Jan- Hunen, J., and Iinatti, J. (2017). Performance of a low-power wide-area network based on LoRa technology: Doppler robustness, scalability, and coverage. Int. J. Distrib. Sens. Netw. 13 (3).
103 103 Song, Y., Lin, J., Tang, M., and Dong, S. (2017). An Internet of energy things based on wireless LPWAN. Engineering 3 (4): 460–466.
104 104 Mikhaylov, K., Petaejaejaervi, J., and Haenninen, T. (2016). Analysis of Capacity and Scalability of the LoRa Low Power Wide Area Network Technology. In: European Wireless 2016; 22nd European Wireless Conference, 1–6.
105 105 Petric, T., Goessens, M., Nuaymi, L., Toutain, L., and Pelov, A. (2016). Measurements, Performance and Analysis of LoRa FABIAN, a Real-World Implementation of LPWAN. In: 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 1–7.
106 106 Petajajarvi, J., Mikhaylov, K., Hamalainen, M., and Iinatti, J. (2016). Evaluation of LoRa LPWAN Technology for Remote Health and Wellbeing Monitoring. In: 2016 10th International Symposium on Medical Information and Communication Technology (ISMICT), 1–5.
107 107 LoRa Alliance. About LoRaWAN@. https://lora-alliance.org/about-lorawan.
108 108 Wang, Y.E., Lin, X., Adhikary, A., Grovlen, A., Sui, Y., Blankenship, Y., Bergman, J., and Razaghi, H.S. (2017). A primer on 3GPP narrowband Internet of things. IEEE Commun. Mag. 55 (3): 117–123.
109 109 Mwakwata, C.B., Malik, H., Alam, M.M., Yannick, L.M., Parand, S., and Mumtaz, S. (Jun 2019). Narrowband Internet of things (NB-IoT): From physical (PHY) and media access control (MAC) layers perspectives. Sensors 19 (11).
110 110 Adhikary, A., Lin, X., and Wang, Y.E. (2016). Performance Evaluation of NB-IoT Coverage. In: 2016 IEEE 84th Vehicular Technology Conference (VTC- Fall), 1–5.
111 111 Gozalvez, J. (2016). New 3GPP standard for IoT [Mobile Radio]. IEEE Veh. Technol. Mag. 11 (1): 14–20.
112 112 Singtel. Smart Logistics, Get Better Visibility into Your Operations. https://www.singtel.com/business/solutions/iot-solutions/use-cases/smart-logistics.
113 113 GSMA. (Jun 2019). NB-IoT Commercialisation Case Study. https://www.gsma.com/iot/wp-content/uploads/2019/08/201902_GSMA_NB-IoT_Commercialisation_CaseStudy.pdf.
114 114 Huawei. Huawei LiteOS-assisted Smart Lighting Solution. https://www.huawei.com/minisite/liteos/en/lighting.html.
115 115 Rico-Alvarino, A., Vajapeyam, M., Xu, H., Wang, X., Blankenship, Y., Bergman, J., Tirronen, T., and Yavuz, E. (2016). An overview of 3GPP enhancements on machine to machine communications. IEEE Commun. Mag. 54 (6): 14–21.
116 116 Oliveira, L., Rodrigues, J., Kozlov, S., Rabelo, R., and Albuquerque, V. (Jan 2019). MAC layer protocols for Internet of things: A survey. Future Internet 11 (1): 16.
117 117 Ali, A., Hamouda, W., and Uysal, M. (2015). Next generation M2M cellular networks: Challenges and practical considerations. IEEE Commun. Mag. 53 (9): 18–24.
118 118 Thales, L.T.E.-M.Connectivity Optimized for IoT. https://www.thalesgroup.com/en/markets/digital-identity-and-security/iot/resources/innovation-technology/lte-m.
119 119 Dawaliby, S., Bradai, A., and Pousset, Y. (2016). In Depth Performance Evaluation of LTE-M for M2M Communications. In: 2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), 1–8.
120 120 GSMA. (Jan 2019). LTE-M Commercialisation Case Study. https://www.gsma.com/iot/wp-content/uploads/2019/11/201901_GSMA_LTE-M_Commercial_Case_Study-ATT_Telstra.pdf.
121 121 Lauridsen, M., Kovacs, I.Z., Mogensen, P., Sorensen, M., and Holst, S. (2016). Coverage and Capacity Analysis of LTE-M and NB-IoT in a Rural Area. In: 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), 1–5.
122 122 Anani, W., Ouda, A., and Hamou, A. (2019). A survey of wireless communications for IoT echo-systems. 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), 1–6.
123 123 Christmann, D. (Jul 2020). Hannover Messe: Bosch Solutions for Manufacturing. Bosch Media Service. https://www.bosch-presse.de/pressportal/de/en/hannover-messe-bosch-solutions-for-manufacturing-215168.html.
124 124 Potter, C.H., Hancke, G.P., and Silva, B.J. (2013). Machine-to-Machine: possible Applications in Industrial Networks. 2013 IEEE International Conference on Industrial Technology (ICIT), 1321–1326.
125 125 Tan, S., Sooriyabandara, M., and Fan, Z. (Aug 2011). M2M communications in the smart grid: Applications, standards, enabling technologies, and research challenges. Int. J. Digit. Multimed. Broadcast.
126 126 Taleb, T. and Kunz, A. (2012). Machine type communications in 3GPP networks: Potential, challenges, and solutions. IEEE Commun. Mag. 50 (3): 178–184.
127 127 Zhang, Y., Yu, R., Nekovee, M., Liu, Y., Xie, S., and Gjessing, S. (2012). Cognitive machine-to-machine communications: Visions and potentials for the smart grid. IEEE Netw. 26 (3): 6–13.
128 128 ETSI. (Mar 2016). Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); LTE; Service requirements for Machine-Type Communications (MTC); Stage 1 (V13.1.0). TS 122 368, European Telecommunications Standards Institute (ETSI). https://www.etsi.org/deliver/etsi_ts/122300_122399/122368/13.01.00_60/ts_122368v130100p.pdf.
129 129 Andreev, S., Galinina, O., Pyattaev, A., Gerasimenko, M., Tirronen, T., Torsner, J., Sachs, J., Dohler, M., and Koucheryavy, Y. (2015). Understanding the IoT connectivity landscape: A contemporary M2M radio technology roadmap. IEEE Commun. Mag. 53 (9): 32–40.
130 130 Chen, K.-C. and Lien, S.-Y. (2014). Machine-to-machine communications: Technologies and challenges. Ad Hoc Netw. 18: 3–23.
131 131 Shariatmadari, H., Ratasuk, R., Iraji, S., Laya, A., Taleb, T., Jantti, R., and Ghosh, A. (2015). Machine-type communications: Current status and future perspectives toward 5G systems. IEEE Commun. Mag. 53 (9): 10–17.
132 132 3GPP. (Mar 2007). Study on Facilitating Machine to Machine Communication in 3GPP Systems (Release 8). TR 22.868, 3rd Generation Partnership Project (3GPP). https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=671.
133 133 3GPP. (Jun 2011). Service Requirements for MTC (Release 10). TR 22.368, 3rd Generation Partnership Project (3GPP). https://portal.3gpp.org/ChangeRequests.aspx?q=1&versionId=39548&release=184.
134 134 3GPP. (Sep 2012). System Improvements for MTC (Release 11). TR 23.888, 3rd Generation Partnership Project (3GPP). https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=968.
135 135 3GPP. (Sep 2015). GERAN Study on Power Saving for MTC Devices (Release 13). TR 43.869, 3rd Generation Partnership Project (3GPP). https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=501.
136 136 3GPP. (Jun 2018). LTE; 5G; Release Description (Release 14). TR 21.914, 3rd Generation Partnership Project (3GPP). https://www.etsi.org/deliver/etsi_tr/121900_121999/121914/14.00.00_60/tr_121914v140000p.pdf.
137 137 Sharma, S.K. and Wang, X. (2020). Toward Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions. IEEE Commun. Surv. Tutor. 22 (1): 426–471.
138 138 Fu, H., Chen, H.-C., Lin, P., and Fang, Y. (2012). Energy-Efficient Reporting Mechanisms for Multi-Type Real-Time Monitoring in Machine-to-Machine Communications Networks. In: 2012 Proceedings IEEE IN- FOCOM, 136–144.
139 139 Accettura, N., Palattella, M.R., Dohler, M., Grieco, L.A., and Boggia, G. (2012). Standardized Power-Efficient Internet-Enabled Communication Stack for Capillary M2M Networks. In: 2012 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), 226–231.
140 140 ETSI. (Jul 2020). oneM2M; Industrial Domain Enablement (V2.5.1). TR 118 518, European Telecommunications Standards Institute (ETSI). https://www.etsi.org/deliver/etsi_tr/118500_118599/118518/02.05.01_60/tr_118518v020501p.pdf.
141 141 one M2M. (May 2019). Functional Architecture. TS- 0001-V3.15.1, oneM2M. https://onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-V3_15_1.pdf.
142 142 Sadeghi, A., Wachsmann, C., and Waidner, M. (2015). Security and privacy challenges in industrial Internet of things. In: 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), 1–6.
143 143 Biral, A., Centenaro, M., Zanella, A., Vangelista, L., and Zorzi, M. (2015). The challenges of M2M massive access in wireless cellular networks. Digit. Commun. Netw. 1 (1): 1–19.
144 144 3GPP. (Mar 2009). Technical Specifications and Technical Reports for a UTRAN-based 3GPP System (Release 8). TR 21.101, 3rd Generation Partnership Project (3GPP). https://portal.3gpp.org/ChangeRequests.aspx?q=1&versionId=36836&release=182.
145 145 3GPP. (Oct 2010). Evolved universal terrestrial radio access (E-UTRA); Carrier Aggregation; Base Station (BS) Radio Transmission and Reception (Release 10). TR 36.808, 3rd Generation Partnership Project (3GPP). https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2487.
146 146 3GPP. (Sep 2013). Study on Enhancements to Machine-Type Communications (MTC) and Other Mobile Data Applications; Radio Access Network (RAN) Aspects (Release 12). TR 37.869, 3rd Generation Partnership Project (3GPP). https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2631.
147 147 Andrews, J.G. (2013). Seven ways that hetnets are a cellular paradigm shift. IEEE Commun. Mag. 51 (3): 136–144.
148 148 Zhang, X., Shen, X.S., and Xie, L. (2014). Joint subcarrier and power allocation for cooperative communications in LTE-advanced networks. IEEE Trans. Wirel. Commun. 13 (2): 658–668.
149 149 Yongsheng, H., Chen, Z., and Hao, Z. (2018). Relay node, distributed network of relay node and networking method thereof. European Patent EP09846416A, application filed 22 December 2009 and granted 28 March.
150 150 Sabella, D., Rost, P., Sheng, Y., Pateromichelakis, E., Salim, U., Guitton- Ouhamou, P., Di Girolamo, M., and Giuliani, G. (2013). RAN as a service: challenges of designing a flexible RAN architecture in a cloud-based heterogeneous mobile network. In: 2013 Future Network Mobile Summit, 1–8.
151 151 Gandotra, P. and Jha, R.K. (2016). Device-to-device communication in cellular networks: A survey. J. Netw. Comput. Appl. 71: 99–117.
152 152 Bizanis, N., and Kuipers, F.A. (2016). SDN and virtualization solutions for the Internet of things: A survey. IEEE Access 4: 5591–5606.
153 153 Wang, X. and Gao, L. (2020). When 5G Meets Industry 4-0. Springer.
154 154 Qualcomm. (Oct 2017). Private LTE networks create new opportunities for industrial IoT. Qualcomm Technologies, Inc. https://www.qualcomm.com/media/documents/files/private-lte-network-presentation.pdf.
155 155 Ericsson. (Jul 2020). Private networks for industries. https://www.ericsson.com/en/networks/offerings/mission-critical-private-networks/private-networks.
156 156 Bockelmann, C., Pratas, N., Nikopour, H., Au, K., Svensson, T., Ste- Fanovic, C., Popovski, P., and Dekorsy, A. (2016). Massive machine-type communications in 5G: Physical and MAC-layer solutions. IEEE Commun. Mag. 54 (9): 59–65.
157 157 ITU-R. (Sep 2015). IMT Vision–Framework and overall objectives of the future development of IMT for 2020 and beyond. Recommendation ITU-R M.2083-0, International Telecommunication Union (ITU). https://www.itu.int/dms_pubrec/itu-r/rec/rn/R-REC-M.2083-0-201509-IllPDF-E.pdf.
158 158 3GPP. (Mar 2019). Study on physical layer enhancements for NR ultra reliable and low latency case (URLLC) (Release 16). TR 38-824, 3rd generation partnership project (3GPP). https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3498
159 159 Oleshchuk, V. and Fensli, R. (2011). Remote patient monitoring within a future 5G infrastructure. Wirel. Pers. Commun. 57 (3): 431–439.
160 160 Chen, H., Abbas, R., Cheng, P., Shirvanimoghaddam, M., Hardjawana, W., Bao, W., Li, Y., and Vucetic, B. (2018). Ultra-reliable low latency cellular networks: Use cases, challenges and approaches. IEEE Commun. Mag. 56 (12): 119–125.
161 161 Yilmaz, O.N.C., Wang, Y.E., Johansson, N.A., Brahmi, N., Ashraf, S.A., and Sachs, J. (2015). Analysis of ultra-reliable and low-latency 5g communication for a factory automation use case. In: 2015 IEEE International Conference on Communication Workshop (ICCW), 11901195.
162 162 Farkas, J., Varga, B., Miklos, G., and Sachs, J. (Aug 2019). 5G-TSN integration meets networking requirements for industrial automation. Ericsson. https://www.ericsson.com/4a4cb4/assets/local/reports-papers/ericsson-technology-review/docs/2019/5g-tsn-integration-for-industrial-automation.pdf.
163 163 O’Connell, E., Moore, D., and Newe, T. (Jun 2020). Challenges associated with implementing 5G in manufacturing. Telecom 1 (1): 48–67.
164 164 Thales. (Dec 2020). Introducing 5G technology and networks (speed, use cases and rollout). https://www.thalesgroup.com/en/markets/digital-identity-and-security/mobile/inspired/5G.
165 165 Ericsson.(Sep 2019). Ushering in a better connected future. https://www.ericsson.com/en/about-us/company-facts/ericsson-worldwide/india/authored-articles/ushering-in-a-better-connected-future.
166 166 GSMA. (Feb 2020) 5G implementation guidelines: NSA Option 3. https://www.gsma.com/futurenetworks/wp-content/uploads/2019/03/5G-Implementation-Guidelines-NSA-Option-3-v2.1.pdf.
167 167 GSMA. (Oct 2020). 5G IoT Private and dedicated networks for Industry 4.0. https://www.gsma.com/iot/wp-content/uploads/2020/10/2020-10-GSMA-5G-IoT-Private-and-Dedicated-Networks-for-Industry-4.0.pdf.
168 168 Qualcomm. Deploying 5G NR mmWave to unleash the full 5G’s potential. https://www.qualcomm.com/media/documents/files/deploying-mmwave-to-unleash-5g-s-full-potential.pdf.
169 169 Bockelmann, C., Pratas, N.K., Wunder, G., Saur, S., Navarro, M., Gregoratti, D., Vivier, G., De Carvalho, E., Ji, Y., Stefanovic, C., et al. (2018). Towards massive connectivity support for scalable mMTC communications in 5G networks. IEEE Access 6: 28969–28992.
170 170 Glabowski, M., Hanczewski, S., Stasiak, M., Weis- Senberg, M., Zwierzykowski, P., and Bai, V. (2020). Traffic modeling for industrial Internet of things (IIoT) networks. In: Image Processing and Communications (ed. M. Choras and R.S. Choras), 264–271. Springer International Publishing.
171 171 Candell, R., Zimmerman, T., and Stouffer, K. (Dec 2015). An industrial control system cybersecurity performance testbed. NIST Interagency/Internal Report (NISTIR) 8089, US Department of Commerce, National Institute of Standards and Technology (NIST). https://www.nist.gov/publications/industrial-control-system-cybersecurity-performance-testbed.
172 172 Wetzker, U., Splitt, I., Zimmerling, M., Boano, C.A., and Romer, K. (Aug 2016). Troubleshooting wireless coexistence problems in the industrial Internet of things. In: 2016 IEEE Intl Conference on Computational Science and Engineering (CSE) and IEEE Intl Conference on Embedded and Ubiquitous Computing (EUC) and 15th Intl Symposium on Distributed Computing and Applications for Business Engineering (DCABES).
173 173 Liu, Y., and Moayeri, N. (Sep 2017). Wireless Activities in the 2 GHz Radio Bands in Industrial Plants. Technical Note (NIST TN) 1972, US Department of Commerce, National Institute of Standards and Technology (NIST). https://www.nist.gov/publications/wireless-activities-2-ghz-radio-bands-industrial-plants.
174 174 Lien, S., Tseng, C., Chen, K., and Su, C. (2010). Cognitive radio resource management for QoS guarantees in autonomous femtocell networks. In: 2010 IEEE International Conference on Communications, 1–6.
175 175 Chiwewe, T.M., Mbuya, C.F., and Hancke, G.P. (2015). Using cognitive radio for interference-resistant industrial wireless sensor networks: An overview. IEEE Trans. Industr. Inform. 11 (6): 1466–1481.
176 176 ODVA. EtherNet/IP™. ODVA, Inc. (Open DeviceNet Vendors Association). https://www.odva.org/technology-standards/key-technologies/ethernet-ip.
177 177 PROFIBUS & PROFINET International (PI). PROFINET: the leading industrial ethernet standard. https://www.profibus.com/technology/profinet.
178 178 Modbus Organization. Modbus specifications and implementation guides. https://www.modbus.org/specs.php.
179 179 Burke, T.J. (2017). OPC unified architecture – interoperability for Industrie 4.0 and the Internet of things. OPC Foundation. https://opcfoundation.org/wp-content/uploads/2016/05/OPC-UA-Interoperability-For-Industrie4-and-IoT-EN-v5.pdf.
180 180 Prakash, S. and Kinage, A.IIoT (Industrial Internet of Things) Communication Interface. US Patent 15/995079, application filed 09 April 2019.
181 181 Mahmood, A., Exel, R., Trsek, H., and Sauter, T. (2017). Clock synchronization over IEEE 802.11—A survey of methodologies and protocols. IEEE Trans. Industr. Inform. 13 (2): 907–922.
182 182 Nieminen, J., Savolainen, T., Isomaki, M., Patil, B., Shelby, Z., and Gomez, C. (Oct 2015). RFC 7668 – IPv6 over BLUETOOTH(R) Low Energy. Internet Engineering Task Force (IETF). https://tools.ietf.org/html/rfc7668.
183 183 Thubert, P., Bormann, C., Toutain, L., and Cragie, R. (Apr 2017). IPv6 over low-power wireless personal area network (6LoWPAN) routing header. Internet Engineering Task Force (IETF). https://tools.ietf.org/html/rfc8138.
184 184 Tse, D., and Viswanath, P. (2005). Fundamentals of Wireless Communication. Cambridge University Press.
185 185 Suriyachai, P., Roedig, U., and Scott, A. (2012). A survey of MAC protocols for mission-critical applications in wireless sensor networks. IEEE Commun. Surv. Tutor. 14 (2): 240–264.
186 186 Beltran, F. (Sep 2017). Accelerating the introduction of spectrum sharing using market-based mechanisms. IEEE Commun. Stand. Mag. 1: 66–72.
187 187 Samanta, A., and Misra, S. (2018). Dynamic connectivity establishment and cooperative scheduling for QoS-aware wireless body area networks. IEEE Trans. Mob. Comput. 17 (12): 2775–2788.
188 188 Kiran, M.P.R.S., Subrahmanyam, V., and Rajalakshmi, P. (2018). Novel power management scheme and effects of constrained on-node storage on performance of MAC layer for industrial IoT networks. IEEE Trans. Industr. Inform. 14 (5): 2146–2158.
189 189 Kumar, A., Zhao, M., Wong, K., Guan, Y.L., and Chong, P.H.J. (2018). A comprehensive study of IoT and WSN MAC protocols: Research issues, challenges and opportunities. IEEE Access 6: 76228–76262.
190 190 Ullah, F., Abdullah, H., Kaiwartya, O., Kumar, S., and Arshad, M.M. (Dec 2017). Medium access control (MAC) for wireless body area network (WBAN): Superframe structure, multiple access technique, taxonomy, and challenges. Hum.-Centric Comput. Inf. 7. 10.1186/s13673-017-0115-4
191 191 Suriyachai, P., Brown, J., and Roedig, U. (2010). Time-critical data delivery in wireless sensor networks. In: Distributed Computing in Sensor Systems (ed. R. Rajaraman, T. Moscibroda, A. Dunkels, and A. Scaglione), 216–229. Springer Berlin Heidelberg.
192 192 Zheng, T., Gidlund, M., and Akerberg, J. (2016). WirArb: a new MAC protocol for time critical industrial wireless sensor network applications. IEEE Sens. J. 16 (7): 2127–2139.
193 193 Akyildiz, I. and Vuran, M.C. (2010). Medium access control. In Wireless Sensor Networks, chapter 5, 77–116. John Wiley & Sons, Ltd.
194 194 Xiao, X., Tao, X., and Lu, J. (2015). Energy-efficient resource allocation in LTE-based MIMO-OFDMA systems with user rate constraints. IEEE Trans. Veh. Technol. 64 (1): 185–197.
195 195 Bankov, D., Didenko, A., Khorov, E., and Lyakhov, A. (2018). OFDMA Uplink Scheduling in IEEE 802.11ax Networks. In: 2018 IEEE International Conference on Communications (ICC), 1–6.
196 196 Jacob, S., Menon, V.G., Joseph, S., Vinoj, P.G., Jolfaei, A., Lukose, J., and Raja, G. (2020). A novel spectrum sharing scheme using dynamic long shortterm memory with CP-OFDMA in 5G networks. IEEE Trans. Cogn. Commun. Netw. 6 (3): 926–934.
197 197 Karl, H. and Willig, A. (2005). MAC Protocols. In: Protocols and Architectures for Wireless Sensor Networks (ed. H. Karl and A. Willig), 111–148. John Wiley & Sons, Ltd.
198 198 Doudou, M., Djenouri, D., Badache, N., and Bouabdallah, A. (2014). Synchronous contention-based mac protocols for delay- sensitive wireless sensor networks: A review and taxonomy. J. Netw. Comput. Appl. 38: 172–184.
199 199 Abramson, N. (1985). Development of the ALOHANET. IEEE Trans. Inf. Theory 31 (2): 119–123.
200 200 Georgiadis, L. (2003). Carrier-sense multiple access (CSMA) protocols. In: Wiley Encyclopedia of Telecommunications (ed. J.G. Proakis). American Cancer Society.
201 201 Daabaj, K. and Ahmeda, S. (2011). Real-time cross-layer routing protocol for ad hoc wireless sensor networks. In: Advances in Computer Science and Engineering (ed. M. Schmidt). Intechopen.
202 202 El-Hoiydi, A. (2002).ALOHA with preamble sampling for sporadic traffic in ad-hoc wireless sensor networks. In: 2002 IEEE International Conference on Communications- Conference Proceedings- ICC 2002 (Cat- No-02CH37333), 5, 3418–3423.
203 203 Liu, Y., Yuen, C., Cao, X., Hassan, N.U., and Chen, J. (2014). Design of a scalable hybrid MAC protocol for heterogeneous M2M networks. IEEE Internet Things J. 1 (1): 99–111.
204 204 Nguyen, V., Oo, T.Z., Chuan, P., and Hong, C.S. (2016). An efficient time slot acquisition on the hybrid TDMA/CSMA multichannel MAC in VANETs. IEEE Commun. Lett. 20 (5): 970–973.
205 205 Schutze, A., Helwig, N., and Tizian, S. (May 2018). Sensors 4.0 – smart sensors and measurement technology enable industry 4.0. J. Sens. Sens. Syst. 7: 359–371.
206 206 Johar, M. and Koenig, A. (2011). Case study of an intelligent AMR sensor system with self-x properties. In: Soft Computing in Industrial Applications (ed. A. Gaspar-Cunha, R. Takahashi, G. Schaefer, and L. Costa), 337–346. Springer Berlin Heidelberg.
207 207 Kanoun, O. and Trankler, H. (2004). Sensor technology advances and future trends. IEEE Trans. Instrum. Meas. 53 (6): 1497–1501.
208 208 Goncalves, G., Reis, J., Pinto, R., Alves, M., and Correia, J. (2014). A step forward on intelligent factories: A smart sensor-oriented approach. Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), 1–8.
209 209 Lee, K. (2000). IEEE 1451: A standard in support of smart transducer networking. Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference [Cat. No. 00CH37066], 2, 525–528.
210 210 OPC Foundation. What is OPC? https://opcfoundation.org/about/what-is-opc.
211 211 Gaddis, B. (Aug 2015). How sensors will revolutionize service businesses. https://www.wired.com/insights/2013/05/how-sensors-will-revolutionize-service-businesses/.
212 212 Association for Supply Chain Management (ASCM). (2019). Digitising Your Supply Chain Provides the Agility Your Company Needs to Survive and Thrive. SCOR Digital Standard. https://scor.ascm.org/processes/introduction.
213 213 Shih, Y.-Y., Chung, W.-H., Pang, A.-C., Chiu, T.-C., and Wei, H.-Y. (2017). Enabling low-latency applications in fog-radio access networks. IEEE Netw. 31 (1): 52–58.
214 214 Graf, U., Heidel, R., Kadel, G., Karcher, B., Mildner, F., Schulz, D., and Tenhagen, D. (2016). Network-based communication for Industrie 4.0. Federal ministry for economic affairs and energy (BMWi). https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/network-based-communication-for-i40.pdf?__blob=publicationFile&v=8.
215 215 5G-PPP. (Oct 2015). 5G and the factories of the future. 5G infrastructure public private partnership (5G-PPP). https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Factories-of-the-Future-Vertical-Sector.pdf.
216 216 Siemens. (Nov 2020). Industrial 5G–The wireless network of the future. www.siemens.com/press/industrial-5g.
217 217 HMS Networks. HMS and Ericsson-enabling smart manufacturing and Industry 4.0. https://www.hms-networks.com/about/partner-program/hms-in-customer-partner-programs/ericsson/hms-and-ericsson__enabling-smart-manufacturing-and-industry-4.0.
218 218 Ericsson. (Dec 2020). The future of mining and hitting paydirt with private cellular. https://www.ericsson.com/en/blog/2020/12/the-future-of-mining-hitting-paydirt-with-private-cellular.
219 219 Ericsson. (Feb 2021). Why connected ports are smarter with private cellular networks. https://www.ericsson.com/en/blog/2021/2/connecting-future-ports-with-private-cellular-networks.
220 220 Karrenbauer, M., Ludwig, S., Buhr, H., Klessig, H., Bernardy, A., Huanzhuo, W., Pallasch, C., Fellan, A., Hoffmann, N., Seelmann, V., et al.et al. (2019). Future industrial networking: From use cases to wireless technologies to a flexible system architecture. Automatisierungstechnik 67 (7): 526–544.
221 221 Rajatheva, N., Atzeni, I., Bjornson, E., Bourdoux, A., Buzzi, S., Dore, J.-B., Erkucuk, S., Fuentes, M., Guan, K., Hu, Y., et al. et(Apr 2020). White paper on broadband connectivity in 6G. arXiv Preprint arXiv:2004-14247.
222 222 Akhtar, M.W., Hassan, S., Ghaffar, R., Jung, H., Garg, S., and Shamim Hossain, M. (Dec 2020). The shift to 6G communications: vision and requirements. Hum.-Centric Comput. Inf. 10 (1): 53.
223 223 Mitsubishi Electric. Industry 4.0-the road to digitalisation in future manufacturing. Mitsubishi Electric. https://gb3a.mitsubishielectric.com/fa/en/news/content?id=2989
224 224 Romero, J., Martinez, J., Nikkarinen, S., and Moisio, M. (2003). GPRS and EGPRS performance. In: GSM, GPRS and EDGE Performance: Evolution Towards 3G/UMTS, 2e, chapter 7 (ed. T. Halonen, J. Melero, and J.R. Garcia), 235–305. John Wiley & Sons, Ltd.
225 225 Holma, H., Kristensson, M., Salonen, J., and Toskala, A. (2002). UMTS services and applications. In: WCDMA for UMTS: Radio Access for Third Generation Mobile Communications, 3e, chapter 2, (ed. H. Holma and A. Toskala), 11–45. John Wiley & Sons, Ltd.
226 226 GPS.GOV. The global positioning system. https://www.gps.gov.
227 227 Bennis, M., Debbah, M., and Poor, H.V. (2018). Ultrareliable and low-latency wireless communication: Tail, risk, and scale. Proc. IEEE 106 (10): 1834-1853.
228 228 Ji, H., Park, S., Yeo, J., Kim, Y., Lee, J., and Shim, B. (2018). Ultra-reliable and low-latency communications in 5G Downlink: Physical layer aspects. IEEE Wirel. Commun. 25 (3): 124–130.
229 229 VDMA. (Dec 2017). Industrie 4.0 communication guideline based on OPC UA. https://industrie40.vdma.org/documents/214230/20743172/Leitfaden_OPC_UA_Englisch_1506415735965.pdf/a2181ec7-a325-44c0-99d2-7332480de281.