Читать книгу The Science of Reading - Группа авторов - Страница 68
References
Оглавление1 Adelman, J. S., Johnson, R. L., McCormick, S. F., McKague, M., Kinoshita, S., Bowers, J. S., … & Scaltritti, M. (2014). A behavioral database for masked form priming. Behavior Research Methods, 46, 1052–1067. doi: 10.3758/s13428‐013‐0442‐y.
2 Andrews, S. (1989). Frequency and neighborhood size effects on lexical access: Activation or search? Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 802–814. doi: 10.1037/0278‐7393.15.5.802.
3 Andrews, S. (1997). The effect of orthographic similarity on lexical retrieval: Resolving neighborhood conflicts. Psychonomic Bulletin & Review, 4, 439–461. doi: 10.3758/BF03214334.
4 Andrews, S., & Hersch, J. (2010). Lexical precision in skilled readers: Individual differences in masked neighbor priming. Journal of Experimental Psychology: General, 139(2), 299–318. doi: 10.1037/a0018366.
5 Aschenbrenner, A. J., Balota, D. A., Weigand, A. J., Scaltritti, M., & Besner, D. (2017). The first letter position effect in visual word recognition: The role of spatial attention. Journal of Experimental Psychology: Human Perception and Performance, 43, 700–718. doi: 10.1037/xhp0000342.
6 Balota, D. A., Yap, M. J., Cortese, M. J., Hutchison, K. I., Kessler, B., Loftis, B., … & Treiman, R. (2007). The English Lexicon Project. Behavior Research Methods, 39, 445–459. doi: 10.3758/bf03193014.
7 Bowers, J. S., Davis, C. J., & Hanley, D. A. (2005). Automatic semantic activation of embedded words: Is there a “hat” in “that”? Journal of Memory & Language, 52, 131–143. doi: 10.1016/j.jml.2004.09.003.
8 Bruner, J. S., & O’Dowd, D. (1958). A note on the informativeness of parts of words. Language and Speech, 1, 98–101. doi: 10.1016/j.jml.2004.09.003.
9 Brysbaert, M. (1994). Interhemispheric transfer and the processing of foveally presented stimuli. Behavioural Brain Research, 64, 151–161. doi: 10.1016/0166‐4328(94)90127‐9.
10 Brysbaert, M. & Nazir, T. (2005). Visual constraints in written word recognition: Evidence from the optimal viewing‐position effect. Journal of Research in Reading, 28, 216–228. doi: 10.1111/j.1467‐9817.2005.00266.x.
11 Carreiras, M., Armstrong, B. C., Perea, M., & Frost, R. (2014). The what, when, where, and how of visual word recognition. Trends in Cognitive Sciences, 18, 90–98. doi: 10.1016/j.tics.2013.11.005.
12 Carreiras, M., Perea, M. & Grainger, J. (1997). Effects of orthographic neighborhood in visual word recognition: Cross‐task comparisons. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 857–871. doi: 10.1037//0278‐7393.23.4.857.
13 Cattell, J. M. (1886). The time it takes to see and name objects. Mind, 11, 63–65. doi: 10.1093/mind/os‐XI.41.63.
14 Chambers, S. M. (1979). Letter and order information in lexical access. Journal of Verbal Learning and Behavior, 18, 225–241. doi: 10.1016/S0022‐5371(79)90136‐1.
15 Chanceaux, M., Mathôt, S., & Grainger, J. (2013). Flank to the left, flank to the right: Testing the modified receptive field hypothesis of letter‐specific crowding. Journal of Cognitive Psychology, 25, 774–780. doi: 10.1080/20445911.2013.823436.
16 Chung, S.T.L. (2002). The effect of letter spacing on reading speed in central and peripheral vision. Investigative Ophthalmology & Visual Science, 43, 1270–1276. doi: 10.1167/7.2.2.
17 Chung, S.T., Mansfield, J. S., & Legge, G. E. (1998). Psychophysics of reading. XVIII: The effect of print size on reading speed in normal peripheral vision. Vision Research, 38, 2949–2962. doi: 10.1016/s0042‐6989(98)00072‐8.
18 Clark, J. J., & O'Regan, J. K. (1999). Word ambiguity and the optimal viewing position in reading. Vision Research, 39, 843–857. doi: 10.1016/s0042‐6989(98)00203‐x.
19 Cohen, L., Dehaene, S., Naccache, L., Lehe’ricy, S., Dehaene‐Lambertz, G., He’naff, M. A., & Michel, F. (2000). The visual word form area: Spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split‐brain patients. Brain, 123, 291–307. doi: 10.1093/brain/123.2.291.
20 Coltheart, M., Davelaar, E., Jonasson, J. F., & Besner, D. (1977). Access to the internal lexicon. In S. Dornic (Ed.), Attention & performance VI (pp. 535–555). Hillsdale, NJ: Erlbaum. doi: 10.1080/14640747908400741.
21 Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J.C. (2001). DRC: A dual‐route cascaded model of visual word recognition and reading aloud. Psychological Review, 108, 204–256. doi: 10.1037/0033‐295x.108.1.204.
22 Dare, N., & Shillcock, R. (2013). Serial and parallel processing in reading: Investigating the effects of parafoveal orthographic information on nonisolated word recognition. The Quarterly Journal of Experimental Psychology, 66, 417–428. doi: 10.1080/17470218.2012.703212.
23 Davis, C. J. (2010). The spatial coding model of visual word recognition. Psychological Review, 117, 713–758. doi: 10.1037/a0019738.
24 Davis, C. J., & Lupker, S. (2006). Masked inhibitory priming in English: Evidence for lexical inhibition. Journal of Experimental Psychology: Human Perception and Performance, 32, 668–687. doi: 10.1037/0096‐1523.32.3.668.
25 Decklerck, M., Wen, Y., Snell, J., Meade, G., & Grainger, J. (2020). Unified syntax in the bilingual mind. Psychonomic Bulletin and Review, 27, 149–154. doi: 10.3758/s13423‐019‐01666‐x.
26 Dehaene, S., Cohen, L., Sigman, M., & Vinckier, F. (2005). The neural code for written words: A proposal. Trends in Cognitive Sciences, 9, 335–341. doi: 10.1016/j.tics.2005.05.004.
27 De Moor, W., & Brysbaert, M. (2000). Neighborhood‐frequency effects when primes and targets are of different lengths. Psychological Research, 63, 159–162. doi: 10.1007/pl00008174.
28 Deutsch, A., & Rayner, K. (1999). Initial fixation location effects in reading Hebrew words. Language and Cognitive Processes, 14, 393–421. doi: 10.1080/016909699386284.
29 Diependaele, K., Ziegler, J., & Grainger, J. (2010). Fast phonology and the bi‐modal interactive activation model. European Journal of Cognitive Psychology, 22, 764–778. doi: 10.1080/09541440902834782.
30 Ducrot, S., & Grainger, J. (2007). Deployment of spatial attention to words in central and peripheral vision. Perception & Psychophysics, 69, 578–590. doi: 10.3758/bf03193915.
31 Ducrot, S., & Pynte, J. (2002). What determines the eyes' landing position in words? Perception & Psychophysics, 64, 1130–1144. doi: 10.3758/bf03194762.
32 Eriksen, C. W. (1995). The flankers task and response competition: A useful tool for investigating a variety of cognitive problems. Visual Cognition, 2, 101–118. doi: 10.1080/13506289508401726.
33 Farid, M., & Grainger, J. (1996). How initial fixation position influences word recognition: A comparison of French and Arabic. Brain & Language, 53, 351–368. doi: 10.1006/brln.1996.0053.
34 Ferrand, L., Méot, A., Spinelli, E., New, B., Pallier, C., Bonin, P., Dufau, S., Mathôt, S., & Grainger, J. (2018). Megalex: A megastudy of visual and auditory word recognition. Behavior Research Methods, 50, 1285–1307. doi: 10.3758/s13428‐017‐0943‐1.
35 Fiset, D., Blais, C., Ethier‐Majcher, C., Arguin, M., Bub, D., & Gosselin, F. (2008). Features for identification of uppercase and lowercase letters. Psychological Science, 19, 1161–1168. doi: 10.1111/j.1467‐9280.2008.02218.x.
36 Forster, K. I. & Davis, C. (1984). Repetition priming and frequency attenuation in lexical access. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 680–698. doi: 10.1037/0278‐7393.10.4.680.
37 Forster, K. I., & Davis, C. (1991). The density constraint on form‐priming in the naming task: Interference effects from a masked prime. Journal of Memory and Language, 30, 1–25. doi: 10.1016/0749‐596X(91)90008‐8.
38 Forster, K. I., & Taft, M. (1994). Bodies, antibodies, and neighborhood‐density effects in masked form priming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 844–863. doi: 10.1037//0278‐7393.20.4.844.
39 Gil‐López, C., Perea, M., Moret‐Tatay, C., & Carreiras, M. (2011). Can masked priming effects be obtained with handwritten words? Attention, Perception, & Psychophysics, 73, 1643–1649. doi: 10.3758/s13414‐011‐0174‐y.
40 Gomez, P., Ratcliff, R., & Perea, M. (2008). The overlap model: A model of letter position coding. Psychological Review, 115, 577–601. doi: 10.1037/a0012667.
41 Grainger, J. (2018). Orthographic processing: A “mid‐level” vision of reading. Quarterly Journal of Experimental Psychology, 71, 335–359. doi: 10.1080/17470218.2017.1314515.
42 Grainger, J., Dufau, S., & Ziegler, J.C. (2016). A vision of reading. Trends in Cognitive Sciences, 20, 171–179. doi: 10.1016/j.tics.2015.12.008.
43 Grainger, J., Granier, J.P., Farioli, F., Van Assche, E., & van Heuven, W. (2006). Letter position information and printed word perception: The relative‐position priming constraint. Journal of Experimental Psychology: Human Perception and Performance, 32, 865–884. doi: 10.1037/0096‐1523.32.4.865.
44 Grainger, J. & Holcomb, P.J. (2009). Watching the word go by: On the time‐course of component processes in visual word recognition. Language and Linguistics Compass, 3, 128–156. doi: 10.1111/j.1749‐818X.2008.00121.x.
45 Grainger, J., & Jacobs, A. M. (1993). Masked partial‐word priming in visual word recognition: Effects of positional letter frequency. Journal of experimental psychology: human perception and performance, 19, 951. doi: 10.1037//0096‐1523.19.5.951.
46 Grainger, J. & Jacobs, A.M. (1996). Orthographic processing in visual word recognition: A multiple read‐out model. Psychological Review, 103, 518–565. doi: 10.1037/0033‐295x.103.3.518.
47 Grainger, J., Mathôt, S., Vitu, F. (2014). Tests of a model of multi‐word reading: Effects of parafoveal flanking letters on foveal word recognition. Acta Psychologica, 146, 35–40. doi: 10.1016/j.actpsy.2013.11.014.
48 Grainger, J., Rey, A., & Dufau, S. (2008). Letter perception: from pixels to pandemonium! Trends in Cognitive Sciences, 12, 381–387. doi: 10.1016/j.tics.2008.06.006.
49 Grainger, J. & van Heuven, W. (2004). Modeling letter position coding in printed word perception. In P. Bonin (Ed.), The mental lexicon. New York: Nova Science Publishers (pp. 1–24).
50 Hannagan, T., Ktori, M., Chanceaux, M., & Grainger, J. (2012). Deciphering CAPTCHAs: What a Turing test reveals about human cognition. PLoS ONE, 7(3), e32121. doi: 10.1371/journal.pone.0032121.
51 Heilbron, M., Richter, D., Ekman, M., Hagoort, P., & de Lange, F.P. (2020). Word contexts enhance the neural representation of individual letters in early visual cortex. Nature Communications, in press. doi: 10.1038/s41467‐019‐13996‐4.
52 Humphreys, G. W., Evett, L. J., & Quinlan, P. T. (1990). Orthographic processing in visual word identification. Cognitive Psychology, 22, 517–560. doi: 10.1016/0010‐0285(90)90012‐s.
53 Jacobs, A.M. & Grainger, J. (1991). Automatic letter priming in an alphabetic decision task. Perception & Psychophysics, 49, 43–52. doi: 10.3758/bf03211615.
54 Keuleers, E., Lacey, P., Rastle, K., & Brysbaert, M. (2012). The British Lexicon Project: Lexical decision data for 28,730 monosyllabic and disyllabic English words. Behavior Research Methods, 44, 287–304. doi: 10.3758/s13428‐011‐0118‐4.
55 Legge, G.E., Klitz, T.S., & Tjan, B.S. (1997). Mr. Chips: An ideal‐observer model of reading. Psychological Review, 104, 524–553. doi: 10.1037/0033‐295x.104.3.524.
56 Legge, G. E., Pelli, D. G., Rubin, G. S., & Schleske, M. M. (1985). Psychophysics of reading – I. Normal vision. Vision research, 25, 239–252. doi: 10.1016/0042‐6989(85)90117‐8.
57 Lupker, S. J., Perea, M., & Davis, C. J. (2008). Transposed‐letter effects: Consonants, vowels and letter frequency. Language and Cognitive Processes, 23, 93–116.doi: 10.1080/01690960701579714
58 Mayall, K., Humphreys, G. W., & Olson, A. (1997). Disruption to word or letter processing? The origins of case‐mixing effects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 1275–1286. doi: 10.1037//0278‐7393.23.5.1275.
59 McClelland, J. & Rumelhart, D. (1981). An interactive activation model of context effects in letter perception: Part I. An account of basic findings. Psychological Review, 88, 375–407. doi: 10.1037/0033‐295X.88.5.375.
60 Meade, G., Grainger, J., Midgley, K. J., Emmorey, K., & Holcomb, P. J. (2018). From sublexical facilitation to lexical competition: ERP effects of masked neighbor priming. Brain Research, 1685, 29–41. doi: 10.1016/j.brainres.2018.01.029.
61 Mirault, J. & Grainger, J. (2020). On the time it takes to judge grammaticality. The Quarterly Journal of Experimental Psychology, 73, 1460–1465. doi: 10.1177/1747021820913296.
62 Mirault, M., Snell, J., & Grainger, J. (2018). You that read wrong again! A transposed‐word effect in grammaticality judgments. Psychological Science, 29, 1922–1929. doi: 10.1177/0956797618806296.
63 Montani, V., Facoetti, A., & Zorzi, M. (2015). The effect of decreased interletter spacing on orthographic processing. Psychonomic Bulletin & Review, 22, 824–832. doi: 10.3758/s13423‐014‐0728‐9.
64 Mueller, S. T., & Weidemann, C. T. (2012). Alphabetic letter identification: Effects of perceivability, similarity, and bias. Acta Psychologica, 139, 19–37. doi: 10.1016/j.actpsy.2011.09.014.
65 Nazir, T. A. (2000). Traces of print along the visual pathway. In Reading as a perceptual process, pp. 3–22. doi: 10.1016/B978‐008043642‐5/50003‐6.
66 O’Regan, J. K., & Jacobs, A. M. (1992). Optimal viewing position effect in word recognition: A challenge to current theory. Journal of Experimental Psychology: Human Perception & Performance, 18, 185–197.doi: 10.1037/0096‐1523.18.1.185.
67 O’Regan, J.K., Lévy‐Schoen, A., Pynte, J., & Brugaillère, (1984). Convenient fixation location within isolated words of different length and structure. Journal of Experimental Psychology, Human Perception & Performance, 10, 250–257. doi: 10.1037//0096‐1523.10.2.250.
68 Pelli, D. G., Burns, C. W., Farell, B., & Moore‐Page, D. C. (2006). Feature detection and letter identification. Vision Research, 46, 4646–4674. doi: 10.1016/j.visres.2006.04.023.
69 Pelli, D.G. & Tillman, K.A. (2008) The uncrowded window of object recognition. Nature Neuroscience, 1129–1135. doi: 10.1038/nn.2187.
70 Perea, M., Duñabeitia, J. A., & Carreiras, M. (2008). TL priming effects for close versus distant transpositions. Experimental Psychology, 55, 397–406. doi: 10.1027/1618‐3169.55.6.384.
71 Perea, M., & Gomez, P. (2012). Subtle increases in interletter spacing facilitate the encoding of words during normal reading. PLoS One, 7(10), e47568. doi: 10.1371/journal.pone.0047568.
72 Perea, M., & Lupker, S. J. (2003). Does jugde activate COURT? Transposed‐letter similarity effects in masked associative priming. Memory and Cognition, 31(6), 829–841. doi: 10.3758/bf03196438.
73 Perea, M., & Lupker, S. J. (2004). Can caniso activate casino? Transposed‐letter similarity effects with nonadjacent letter positions. Journal of Memory and Language, 51, 231–246. doi: 10.1016/j.jml.2004.05.005.
74 Perea, M., & Rosa, E. (2002). Does “whole‐word shape” play a role in visual word recognition? Perception & Psychophysics, 64, 785–794. doi: 10.3758/bf03194745.
75 Perea, M., Jiménez, M., & Gómez, P. (2014). A challenging dissociation in masked identity priming with the lexical decision task. Acta Psychologica, 148, 130–135. doi: 10.1016/j.actpsy.2014.01.014.
76 Perea, M., Vergara‐Martínez, M., & Gomez, P. (2015). Resolving the locus of cAsE aLtErNaTiOn effects in visual word recognition: Evidence from masked priming. Cognition, 142, 39–43. doi: 10.1016/j.cognition.2015.05.007.
77 Peressotti, F. & Grainger, J. (1999). The role of letter identity and letter position in orthographic priming. Perception & Psychophysics, 61, 691–706. doi: 10.3758/bf03205539.
78 Perry, C., Ziegler, J. C., & Zorzi, M. (2007). Nested incremental modeling in the development of computational theories: the CDP+ model of reading aloud. Psychological Review, 114, 273. doi: 10.1037/0033‐295X.114.2.273.
79 Pollatsek, A., Perea, M., & Binder, K. S. (1999). The effects of “neighborhood size” in reading and lexical decision. Journal of Experimental Psychology: Human Perception and Performance, 25, 1142. doi: 10.1037/0096‐1523.25.4.1142.
80 Rayner, K. (1979). Eye guidance in reading: Fixation locations within words. Perception, 8, 21–30. doi: 10.1068/p080021.
81 Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2, 1019–1025. doi: 10.1038/14819.
82 Schoonbaert, S. & Grainger, J. (2004). Letter position coding in printed word perception: Effects of repeated and transposed letters. Language and Cognitive Processes, 19, 333–367. doi: 10.1080/01690960344000198.
83 Segui, J. & Grainger, J. (1990). Priming word recognition with orthographic neighbors: Effects of relative prime‐target frequency. Journal of Experimental Psychology: Human Perception and Performance, 16, 65–76. doi: 10.1037/0096‐1523.16.1.65.
84 Seidenberg, M. S., & McClelland, J. L. (1989). A distributed, developmental model of word recognition and naming. Psychological Review, 96, 523. doi: 10.1037/0033‐295x.96.4.523.
85 Selfridge, O. G., & Neisser, U. (1960). Pattern recognition by machine. Scientific American, 203, 60–69. doi: 10.1038/SCIENTIFICAMERICAN0860‐60.
86 Snell, J., Declerck, M. & Grainger, J. (2018). Parallel semantic processing in reading revisited: Effects of translation equivalents in bilingual readers. Language, Cognition & Neuroscience, 33, 563–574. doi: 10.1080/23273798.2017.1392583.
87 Snell, J., & Grainger, J. (2017). The sentence superiority effect revisited. Cognition, 168, 217–221. doi: 10.1016/j.cognition.2017.07.003.
88 Snell, J., & Grainger, J. (2019). Readers are parallel processors. Trends in Cognitive Sciences, 23, 537–546. doi: 10.1016/j.tics.2019.04.006.
89 Snell, J., Meeter, M., & Grainger, J. (2017). Evidence for simultaneous syntactic processing of multiple words during reading. PLoS ONE, 12, e0173720. doi: 10.1371/journal.pone.0173720.
90 Snell, J., van Leipsig, S., Grainger, J. & Meeter, M. (2018). OB1‐reader: A model of word recognition and eye movements in text reading. Psychological Review, 125, 969–984. doi: 10.1037/rev0000119.
91 Stevens, M. & Grainger, J. (2003). Letter visibility and the viewing position effect in visual word recognition. Perception & Psychophysics, 65, 133–151. doi: 10.3758/bf03194790.
92 Tydgat, I. & Grainger, J. (2009). Serial position effects in the identification of letters, digits, and symbols. Journal of Experimental Psychology: Human Perception and Performance, 35, 480–498. doi: 10.1037/a0013027.
93 van Assche, E. & Grainger, J. (2006). A study of relative‐position priming with superset primes. Journal of Experimental Psychology: Learning, Memory and Cognition, 32, 399–415. doi: 10.1037/0278‐7393.32.2.399.
94 van Heuven, W., Dijkstra, T., Grainger, J., & Schriefers, H. (2001). Shared neighborhood effects in masked orthographic priming. Psychonomic Bulletin & Review, 8, 96–101. doi: 10.3758/bf03196144.
95 Vergara‐Martínez, M., Gómez, P., Jiménez, M., & Perea, M. (2015). Lexical enhancement during prime–target integration: ERP evidence from matched‐case identity priming. Cognitive, Affective, & Behavioral Neuroscience, 15, 492–504. doi: 10.3758/s13415‐014‐0330‐7.
96 Whitney, C. (2001). How the brain encodes the order of letters in a printed word: The SERIOL model and selective literature review. Psychonomic Bulletin and Review, 8, 221–243. doi: 10.3758/bf03196158.
97 Yarkoni, T., Balota, D., & Yap, M. (2008). Moving beyond Coltheart’s N: A new measure of orthographic similarity. Psychonomic Bulletin & Review, 15, 971–979. doi: 10.3758/PBR.15.5.971.
98 Zorzi, M., Barbiero, C., Facoetti, A., Lonciari, I., Carrozzi, M., Montico, M., … & Ziegler, J. C. (2012). Extra‐large letter spacing improves reading in dyslexia. Proceedings of the National Academy of Sciences, 109, 11455–1459. doi: 10.1073/pnas.1205566109.