Читать книгу Astronomía al aire III - Héctor Rago - Страница 6
ОглавлениеFotografiar un agujero negro
Ninguna de las leyes universales les son aplicables. Son los rebeldes que se escapan.
Rajesh
De todos los conceptos que la física ha recreado, ninguno —ni las supernovas, ni la antimateria, ni la teletransportación cuántica, ni siquiera el Big Bang— tiene el poder mediático de los agujeros negros.
La física lo volvió a hacer. Una vez más las redes sociales estallan y buena parte de la humanidad contempla asombrada, a través de los medios y de internet, la primera fotografía de las inmediaciones de un agujero negro, ese “objeto secreto y conjetural” que nos recuerda que el universo puede ser más extraño de lo que podemos imaginar.
¿Son los agujeros negros una solución a las complejas ecuaciones producidas por la imaginación de los físicos? ¿O la Deus ex machina invocada por los astrofísicos para explicar algunas observaciones del universo violento?
La fotografía difundida en abril de 2019 es la evidencia rotunda de que son las dos cosas. Un agujero negro es un objeto con una existencia real (filósofos, discúlpenme), y que se parece a lo que dicen las soluciones matemáticas de la relatividad.
Cierto, no es la primera vez que la física conjetura entidades que no se han visto: Neptuno, los átomos, la antimateria, el bosón de Higgs y muchas más fueron primero una presunción teórica hasta cuando se los observó.
Creer para ver
Los agujeros negros son una predicción de la relatividad, una predicción de la teoría de Einstein, la cual sabía más que él. Las teorías de la física hablan en un lenguaje cifrado, y no siempre es obvia su interpretación. En las primeras décadas del siglo XX, la relatividad era el paraíso de los teóricos y matemáticos que hurgaban en las ecuaciones buscando una interpretación clara de lo que la teoría establece. Schwarzschild, Oppenheimer, Thorne, Hawking, Penrose y muchos más descifraron lo que la relatividad afirmaba de los agujeros negros. Los teóricos necesitan creer para ver.
Los agujeros negros teóricos son objetos muy sencillos. Desde afuera sus únicas propiedades son su masa y su spin o rotación. Su rasgo distintivo es el horizonte de eventos, una frontera que separa la región externa, que podemos observar, de la interna, de la que no sale ni siquiera la luz. Todo atrapado por el poderoso campo gravitacional. El horizonte define el tamaño del agujero negro, y a su vez el radio del horizonte depende de la masa encerrada. Una vez transgredida la frontera del horizonte, ya no hay vuelta atrás. Como en las puertas del infierno en la Divina Comedia, «abandonad toda esperanza quienes aquí entráis». Materia y radiación son arrastrados hacia la región central y no hay fuerza conocida que contrabalancee la atracción implacable de la gravedad. Ocurre el colapso total, la temible singularidad, donde las leyes conocidas pierden validez. En realidad, la ausencia de leyes nos impide saber el destino final de la materia que colapsa: puerta hacia otro universo, agujero de gusano o infinitos son meras especulaciones.
Ver para creer
Cuando en el universo real los astrónomos detectan una masa grande en una región pequeña, hay un posible agujero negro. En el centro de la galaxia M87 una masa equivalente a 6.500 millones de soles ocupa un tamaño algo mayor que nuestro sistema solar. Un disco de materia a elevadísimas temperaturas gira a una velocidad cercana a la de la luz. Todas las observaciones sugieren la existencia de un agujero negro supermasivo.
Cierto, no podemos ver un agujero negro, pero sus efectos en la materia cercana sí: es como detectar el viento por medio del remolino de las hojas.
Para acercarse visualmente al punto de no retorno del agujero, se requiere un telescopio con una resolución sin precedentes, porque M87 está muy lejos y el horizonte del agujero negro es muy pequeño. Se necesitaría la resolución equivalente para ver una toronja en la luna desde la Tierra.
El Telescopio Horizonte de Eventos (EHT), en un alarde tecnológico formidable, logró la resolución necesaria, unas dos mil veces la del Hubble. Lo hizo coordinando ocho telescopios a lo largo y ancho del planeta, que funcionaron en perfecta sincronía como si fueran uno solo del tamaño de la Tierra. Se tomaron fotografías en ondas de radio de algo más de un milímetro de longitud de onda, y se procesaron cientos de miles de millones de gigabytes de información para ver la sombra del agujero negro, el efecto combinado del horizonte y de la curvatura del espacio alrededor del agujero.
Complicados algoritmos permitieron juntar la información y “revelar” la imagen de las inmediaciones de la galaxia M871. La foto es la evidencia de la existencia real de agujeros negros. Antes de ella, las ondas gravitacionales detectadas por LIGO, emitidas por la fusión de agujeros negros, eran la prueba indirecta más convincente. La coincidencia entre lo que el telescopio observó y las expectativas teóricas fue asombrosa.
Una década de esfuerzos de coordinación de equipos, cinco días de la sesión fotográfica, dos años de análisis y “revelado” de la foto y una hora de la rueda de prensa son apenas el comienzo de observaciones cada vez más nítidas y de descubrimientos fascinantes. Un número creciente de telescopios y nuevas observaciones nos irán afinando progresivamente la imagen del agujero negro en M87 y del que está en nuestro patio trasero, en el centro de la Vía Láctea.
Esto nos permitirá eventualmente conocer cómo se forman los agujeros negros supermasivos y cuál es su rol en el origen y la evolución de las galaxias. La humanidad puede con justicia sentirse orgullosa de haber aprendido un poco más del inconcebible universo.
1 El agujero negro en M87 en cifras: el agujero negro está a unos 55 millones de años luz de distancia de nosotros. Su masa es 6500 millones de veces la masa de nuestro Sol. Su masa es la 1/700 parte de la masa de toda la galaxia M87. Su horizonte es de 18 horas luz, una vez y media el tamaño del sistema solar.