Читать книгу Все науки. №10, 2024. Международный научный журнал - Ибратжон Хатамович Алиев - Страница 10

ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ
О ВЫВЕДЕНИИ УРАВНЕНИЯ ЭЛЕКТРОПРОВОДНОСТИ И МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ПОЛУПРОВОДНИКОВОГО ЭЛЕМЕНТА НА ОСНОВЕ ТЕЛЛУРИДА КАДМИЯ, ОКСИДА КРЕМНИЯ И КРИСТАЛЛИЧЕСКОГО КРЕМНИЯ
1. Кристаллический кремний

Оглавление

Изучение свойств кристаллического кремния начинаются со стации формирования его электронной конфигурации, которая уже ранее была произведена в (18), откуда следует наличие дополнительных двух электронов на внешней орбите кремния, что делает полупроводник в виде кристаллического кремния насыщенным электронами. Для вычисления общего числа зарядов и общего заряда каждого из взятых зарядов могут быть вычислены в (29), что может также использоваться в организованном дифференциальном уравнении в частных производных – электростатическом уравнении Пуассона (30).


Исходя из полученных результатов плотность зарядов в общей плотности, а также относительно каждой проекции с числом зарядов и общим значением зарядов может быть вычислено в (31), что как было продемонстрировано в случае с оксидом кремния и теллуридом кадмия может быть преобразовано в форму потенциала (32).


Каждая из произведённых вычислений становятся граничными условиями в масштабе дальнейший вычислений. Так при учёте, что полученные значения являются общими показателями заряда в каждой из проекций слоя кристаллического кремния, то для выведения выражения функций по каждой из указанных проекций, возможно использование уравнения Пуассона относительно каждой проекции. При этом, это также формируется исходя из в дальнейшем сводящий выражений по объёму, что коррелируется при моделировании трёхмерных графиков. Так, на данный момент известные значения, создают следующую систему изначально обыкновенных дифференциальных уравнений второго порядка, затем в вид системы дважды интегральных уравнений и в результате выражения переходят в форму алгебраических уравнений (33).


По причине каждая из алгебраический уравнений представлены в виде общих форм, то функции могут быть выведены исходи из них в (34), при том, что каждый из них содержит независимые переменные, которые вычисляются в дальнейшем посредством использования в значений потенциалов по граничным показателям, вычисленные ранее в (32), приводя к уравнениям и их соответствующему решению относительно независимых переменных в каждом уравнении в (35).


Подстановка полученных значений независимых переменных приводит к переходу ранее выведенных форм общих функций (33) к результирующей форме в (36).


Каждая функция может быть смоделирована в трёхмерной форме, как это было сформулировано в предыдущих случаях, представляется в двух известных масштабах относительно переменных x, y – относительно 10—2, 10—3 (Рис. 14—16) и 10—5, 10—6 (Рис. 17—19).


Рис. 14. Первое представление потенциальной картины кристаллического кремния в масштабе 10—2 и 10—3 единицы x, y


Рис. 15. Второе представление потенциальной картины кристаллического кремния в масштабе 10—2 и 10—3 единицы x, y


Рис. 16. Третье представление потенциальной картины кристаллического кремния в масштабе 10—2 и 10—3 единицы x, y


Рис. 17. Второе представление потенциальной картины кристаллического кремния в масштабе 10—5 и 10—6 единицы x, y


Рис. 18. Второе представление потенциальной картины кристаллического кремния в масштабе 10—5 и 10—6 единицы x, y


Рис. 19. Второе представление потенциальной картины кристаллического кремния в масштабе 10—5 и 10—6 единицы x, y


В результате смоделированных трёхмерных графиков можно наглядно проследить, что каждый из графиков гладкий и простейший, в отличие от предыдущих двух примеров, где участвовали легированные соединения теллурида кадмия и оксида кремния. В данном случае смоделирован кристаллический чистый кремний, что позволяет получать указанные графики, коррелирующие с действительностью.

Все науки. №10, 2024. Международный научный журнал

Подняться наверх