Читать книгу Все науки. №10, 2024. Международный научный журнал - Ибратжон Хатамович Алиев - Страница 7
ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ
О ВЫВЕДЕНИИ УРАВНЕНИЯ ЭЛЕКТРОПРОВОДНОСТИ И МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ПОЛУПРОВОДНИКОВОГО ЭЛЕМЕНТА НА ОСНОВЕ ТЕЛЛУРИДА КАДМИЯ, ОКСИДА КРЕМНИЯ И КРИСТАЛЛИЧЕСКОГО КРЕМНИЯ
1. Уравнение электропроводности
ОглавлениеДля этого применяется модель смежного уравнения – уравнения теплопроводности, для вывода которого используется трижды интегральная форма теплоёмкости (1) и дважды интегральная форма теплопроводности (2), для которых действует выражение (3).
Сформированное выражение (3) может быть сведено до формы уравнения теплопроводности в (4).
Исходя из преобразования (4) аналогичная формулировка может быть выведена для динамической формы уравнения электропроводности. Для этого используется преобразование изначально для формы электропроводности в дважды интегральной форме (5).
В данном случае изначально принимается динамическая характеристика, относительно электропроводности в силу того, что изначальная задача по определению динамическая, что делает выведенное выражение отличным от классической задачи электропроводности в статическом виде. Также в данном случае использовано преобразование лапласиана относительно оператора Набла и градиента, как это было использовано ранее в случае теплопроводности. Следующей стадией является определение электроёмкости (6) и приведение аналогичного выражения для суммы электроёмкости и электропроводности (7).
Таким образом было сформулировано дифференциальное уравнение в частных производных, описывающее явление электропроводности, которое может быть преобразован в последующем. Для явлений электромагнитного поля используется уравнение Пуассона для электростатического поля (8), которое будет оказывать влияние на уравнение (7) и поскольку каждый из функций описывает явление в векторном пространстве со своими единичными элементами, то по определению функционального анализа относительно них может быть использован метод векторного сложения (9), что также лишний раз подтверждается участием оператора Набла в (7) таким образом выведя результирующий вид функции относительно заданного явления, при чём каждый из функций в (9) является решением динамических дифференциальных уравнений в частных производных (7) и (8), соответственно.
При том, что в (8) под углом понимается взаимный угол взаимодействия между функциями-векторами. Для решения представленного уравнения необходимо использование метода Фурье разделения переменных для каждого из избранных случаев, что может быть представлено в расширенном виде, с учётом использования отдельно взятых функций. В реальном представлении указанное уравнение может быть использовано относительно описания электрического перехода в полупроводниковом элементе, построенный согласно слоям CdTe-SiO2-Si, в данном случае между теллуридом кадмия и кремнием будут находиться источники тока, куда направлено напряжение порядка 100—200 В. Также, имеется внешний источник поля, приближённый к слою CdTe, разделённый с слоем кремния посредством оксидной плёнки. Известны размерности каждого из слоёв (Табл. 1).
Таблица 1. Размерности слоёв полупроводникового элемента
В последующем необходимо обратить внимание на каждый из элементов слоя по отдельности для выведения соответствующих функций.