Читать книгу Применение квантового туннельного эффекта код - Илья Зайцев - Страница 9

Часть первая
Глава седьмая
Катализаторы, применяемые в ЭУ

Оглавление

Рассмотрим применяемые в процессах данных энергетических устройств катализаторы, механизм катализа, каталитическую активность, метод синтеза катализатора и нанесения на поверхность.

Данные катализаторы – катализаторы на основе биополупроводников металлопорфиринов, хлорофилла. В данных соединениях мы заменили полупроводниковую часть на синтетический полупроводник арсенид галлия. Катализатор металлопорфиринарсенидгаллия более термически устойчивый, чем хлорофилл. Методы нанесения на поверхность, закрепления и синтеза соединены в одном методе магнитосшития материала. В данной методике применяем электромагниты-соленоиды, установленные на расчетном расстоянии от экрана магнитосшития материала. Предварительно тонкие порошки металлопорфирина и арсенида галлия наносим на экран. Катализаторы – адсорбенты, они адсорбируют молекулы рассматриваемых соединений, соответственно, образуют ослабляющую внутримолекулярные связи каталитическую связь.

Мы применяем следующие катализаторы-адсорбенты: металлы, палладий, амальгаму металла адсорбера водорода, амальгаму палладия, пленкообразующую жидкость, катализатор, амальгамы металлов-адсорберов (адсорберов водорода), катализаторы – адсорбенты кислорода, перфтораны.

Газообразные катализаторы, применяем вырожденную плазму, лептонный газ, метод синтеза катализатора, применяем квантовый эффект, процесс туннельной эмиссии электронов на поверхность туннельного полупроводникового материала, применяемые нами эмиттеры – карбиды металлов, арсенид галлия. Механизм каталитической активности лептонных газов следующий: эмитирующие на поверхность полупроводника лептоны взаимодействуют с молекулами катализируемого соединения (пример – взаимодействие с полярными молекулами воды), далее осуществляется каталитический процесс лептонного ослабления внутримолекулярной связи полярных молекул воды.

Рассмотрим следующий квантовый катализатор: находящиеся в материале СП (ВТСП) электроны образуют квантовую, бозоновскую жидкость, часть неспаренных электронов контактна, соответственно, наблюдается процесс короткоимпульсного преодоления магнитного барьера. Магнитный барьер обуславливает процесс вытеснения магнитного поля на поверхность СП. Чем короче импульс на СП электрического тока, тем выше вероятность преодоления магнитного барьера, взаимодействия неспаренных электронов с внешними соединениями, контактного образования бозоновской жидкости. Далее в процессе охлаждения СП, аккумулирующего электроны, электроны внешних, контактирующих с поверхностью СП соединений сорбируются и отбираются в бозоновскую жидкость.

Мы применяем следующий процесс: когерентное поле квантового источника ЭМ поля (квантового генератора) упорядочивает структуру магнитного материала, процесс намагничивания когерентным полем внешнего источника охлаждает материал до СП.

Рассмотрим подробнее механизм катализа металлопорфиринарсенидгаллием и основу данного катализа – механизм фотокаталитического лизиса воды на магниевом металлопорфирине биополупроводника хлорофилла.

Механизм фотокатализа хлорофиллом: биополупроводник хлорофилл в процессе воздействия на субстрат внешнего источника энергии, электромагнитного поля, солярного электромагнитного поля генерирует разность потенциалов на магниевом металлопорфирине, входящем в состав биомолекул. Металлопорфирин хлорофилла подключен к биополупроводниковой части биомолекулы, так что на данном элементе биокатализатор, есть возобновляемая реакция лизиса воды. В соответствии с данным механизмом мы заменили биополупроводниковую часть хлорофилла, синтезировали катализатор металлопорфиринарсенидгаллия, полупроводниковая часть катализатора металлопорфиринарсенидгаллия подключена к металлопорфирину, функционирует от внешнего источника тока либо внешнего источника электромагнитного поля, соответственно, на металлопорфирине есть возобновляемая реакция лизиса жидкости.

Применение квантового туннельного эффекта код

Подняться наверх