Читать книгу Triumphs and Wonders of the 19th Century: The True Mirror of a Phenomenal Era - James P. Boyd - Страница 17

IX. OTHER ELECTRICAL WONDERS.

Оглавление

Table of Contents

The novel idea of keeping time by means of electricity originated quite early in the century, and culminated in two kinds of electric clocks, one moved directly by the electric current, the other moved by weights or springs, but regulated by electricity. The former have the advantage of running a very long time without attention, but as it is impossible to keep up an unvarying electric current, they are not so accurate as the latter in keeping time. Though the latter are popularly called electric clocks, they are really only clocks regulated by electricity, and in such regulation the electric current comes to be a most important agent, as is proved at all centres of astronomical and other observations, as at Greenwich and Washington. At such centres the astronomical time-keeper is set up so as to run as infallibly as possible. This central time-keeper, say at Washington, is electrically connected with other clocks, at observatories, signal-service stations, railway stations, clock-stores, city halls, etc., throughout the country. Should any of these clocks lose or gain the minutest fraction of time as compared with that of the central time-keeper, the electric current corrects such loss or gain, and so keeps all the clocks at a time uniform with one another and with the central one. Electrical devices are also often attached to individual clocks, as those upon city hall towers and in exposed places, for the purpose of meeting and correcting inequalities of time occasioned by weather exposure, expansion and contraction by heat and cold, etc.

The fatherhood of the very useful and elegant arts of electrotyping and electroplating is in dispute. Daniell, while perfecting his battery, noticed that a current of electricity would cause a deposit of copper. In 1831, Jacobi, of St. Petersburg, called attention to the fact that the copper deposited on his plates of copper by galvanic action could be removed in a perfect sheet, which presented in relief, and most accurately, every accidental indentation on the original plates. Following this up, he employed for his battery an engraved copper plate, caused the deposit to be formed upon it, removed the deposit, and found that the engraving was impressed on it in relief, and with sufficient firmness and sharpness to enable him to print from it. Jacobi called his discovery galvanoplasty in the publication of his observations in 1839. It was but a step from this discovery to the application of the electrotyping process to the art of printing. A mould of wax, plaster, or other suitable substance is made of an engraving or of a page of type. This mould is covered with powdered graphite (black lead) so as to make it a conductor of electricity. It is then inserted in a bath containing a solution of sulphate of copper. An electric current is passed through the bath, and the copper is deposited on the mould in sufficient quantity to give it a hard surface capable of offering greater resistance in printing than the types themselves, and also of producing a clearer impression. In electroplating, practically the same principle is employed. The bath is made to contain a solution of water, cyanide of potassium, and whatever metal—gold, silver, platinum, etc.—it is designed to precipitate on the article to be electroplated. The current is then passed through the bath, and the article—spoon, knife, fork, etc.—to be electroplated receives its coating of gold, silver, German silver, platinum, or whatever has been made the third agent in the bath.

The various modern submarine devices for the destruction of ships, known as torpedoes, submarine mines, etc., depend upon electricity for their efficiency. It is the lighting or firing agent, and is carried to the torpedo or mine by means of stout wires or cables from some safe shore-point of observation.

In railroading, electricity has become an indispensable agent for the operation of signal systems, opening and closing of switches, and limitation of safety sections. It moves the drill in the mine, sets off the blast, and supplies the light. It enables the dentist to manipulate his most delicate tools and do his cleanest and least painful work. In medicine it is a healing, soothing agent, boundless in variety of application and wondrous in results. It is a stimulus to the growth of certain plants, and has given rise to a new science called Electro-horticulture. It may be made a prolific source of heat for warming cars, and even for the welding of iron and steel. The electric fan cools our parlors and offices in summer, and the electric bell simplifies household service. In fact, it would appear that, in contrasting the electrical beginnings with the electrical endings of the nineteenth century, the space of a thousand rather than a hundred years had intervened, and that in measuring the agents which conduce to human comfort and convenience, electricity is easily the most potential.

Triumphs and Wonders of the 19th Century: The True Mirror of a Phenomenal Era

Подняться наверх