Читать книгу Восхождение к вершине гиперкуба. Великая теорема Ферма для миллиардов обычных людей - Марат Авдыев - Страница 5

Часть первая для школьников 12+
Глава 1 Необычная встреча
Врезка. Числа древние, но вечно юные

Оглавление

Числа натуральные, целые, рациональные, иррациональные и трансцендентальные.

Напомним, что в начальных классах школы на уроках арифметики изучаются натуральные числа: 1,2,3,4,5…, которые используются, например для счёта предметов. Говорят, что такие числа образуют бесконечное множество N. Оно обозначается фигурными скобками N = {1,2,3,4,5 ….}. Каким бы большим не было натуральное число n, всегда найдётся число на единицу больше n+1. Конечно, это математическое упрощение, физики установили, что даже Вселенная имеет конечные размеры, определяемое как скорость света с = 3*108 м/с умножить на 15 млрд лет. (Любознательные могут рассчитать размер Вселенной в метрах, для чего удобно принять во внимание, что в году примерно π *10секунд). Оказалось, что для вычислений очень удобно работать с целыми числами, где наряду с положительными имеются также ноль и отрицательные числа. Кольцо целых чисел Z =… -3, -2, -1,0,1,2,3 … с операциями слоения вычитания и умножения. Но и целых чисел не достаточно было для решения задач аграрной индустрии, архитектуры, торговли и мануфактуры, промышленности: именно эти отрасли знаний стимулировали развитие математики. Ещё в Древней Греции были открыты рациональные, иррациональные и трансцендентные числа, впоследствии математики дали им строгое определение.

Рациональное числа представляются в виде дроби p/q. Можно сократить числитель и знаменатель до взаимно простых чисел, разделив их на НОД – наибольший общий делитель. Например, вместо 4/6 писать 2/3. Целую часть можно записать рядом с дробной как-то: 3/2 =1 ½.

Если читать умеет делить числа в столбик, то сможет дробное представление числа привести к десятичному виду, как например 2/3 = 0,6666666666…, рано или поздно в этом ряду появится повторение одной или последовательности чисел или числа. Это происходит потому, что остаток от деления чисел всегда делится на одно и то же делимое. Рано или поздно варианты разных остатков будут исчерпаны и начнётся циклическое повторением (математики вводят понятие сравнение чисел по модулю, принцип Дирихле, а можно просто поэкспериментировать самостоятельно и убедиться!)


Рис. 1.2. Числа.


Вместе с тем, наряду с рациональными существуют иррациональные числа, они не могут быть представлены в виде десятичной дроби с повторяющейся последовательностью чисел, как например, √2= 1.41…. является иррациональным числом. Допустим обратное, которое представимо в виде дроби, состоящей из не имеющих общих делителей числителя и знаменателя p и q. Рассмотрим внимательнее уравнение 2q2 = p2 Его левая часть делится на 2, значит правая часть делится уже на 4, поскольку p можно разложить на простые числа, как то: 2,3,5,7,11,13,17 …. делящиеся только на себя и на единицу. Набор сомножителей в правой части будет повторяться дважды для p2, отсюда свойство делимости на 4. Но тогда и левая часть делится на 4. Смело сократив левую часть на общий делитель 2 в итоге получим что числа p и q, вопреки сделанному допущению, имеют в качестве общего делителя двойку и её степени. А это означает, что исходное предложение относительно числителя и знаменателя оказалось ошибочным: оба они четные, делятся на два, но мы исходно предполагали, что p, q не имеют общих делителей, которые заранее сократили. Значит √2 не представляется в виде дроби, аналогичные рассуждения применимы для корня из двух степени n.

Трансцендентное число не может быть корнем алгебраического выражения, например число π = 3.14158 или число Эйлера е = 2.718. Вместе с тем трансцендентные числа играют важную роль не только в геометрии, но при описании динамических процессов в физике, экономике, социологии.

Целые, рациональные, иррациональные и трансцендентные числа образуют вместе множество действительных чисел R можно сопоставить каждому числу точку на оси абсцисс Х и радиус вектор из начала координат до этой точки, при этом длина этого вектора будет равна модулю числа |х|. Для случая плоскости R2, мы будем иметь дело с парами чисел: (x, y) и радиус вектором из начала координат до точки на плоскости. Для трехмерного пространства R3 понадобится задавать координаты его точек уже тройками чисел (x, y, z) а для многомерного пространства Rn координаты любой точки по осям описываются радиус-вектором (x1, x2,…xn).

Интересно заметить, что целые числа можно сосчитать, а именно: сопоставить каждому целому числу натуральное число – его модуль. Отрицательные числа можно считать парами вместе с положительными (это напоминает работу проводника на два вагона). Такое множество, хотя и бесконечно, является счётным. Несложные рассуждения позволяют сделать вывод, что является счётным множество рациональных числе p/q, для этого можно представить огромный (бесконечный) кинозал, где номер ряда – это знаменатель, а номер места – числитель. Если безбилетник сидит в ряде q на месте p, то проводник – робот, следующий из вершины 1/1 по диагональному пути всё равно его обнаружит как на рисунке ниже.


Рис. 1.3. Рациональные числа можно «сосчитать». Если робот – контролёр двигается по маршруту как указано на рисунке, то он найдёт безбилетника в ряде q на месте p, что соответствует дроби p/q.


Вместе с тем, действительные числа сосчитать невозможно это множество образует континуум. Между двумя близкими рациональными числами всегда найдётся сколько угодно много других иррациональных чисел. Например, в треугольнике средняя линяя равномощна основанию. Это следует понимать так, что каждой точке на средней линии треугольника соответствует точка на его основании, и наоборот.

Восхождение к вершине гиперкуба. Великая теорема Ферма для миллиардов обычных людей

Подняться наверх