Читать книгу Восхождение к вершине гиперкуба. Великая теорема Ферма для миллиардов обычных людей - Марат Авдыев - Страница 9
Часть первая для школьников 12+
Глава 2 Удивительный мир симметрии
Формулировка теоремы Ферма в геометрической форме
Оглавление+++++++++++++++++++++++++++++++++++++++++++++++++++++++
В n-мерном пространстве объем a-Малого гиперкуба (объединение 1n и последовательное наращивание k слоёв) прибавить объем b-Среднего гиперкуба (наращивание ещё l слоёв) образует объем c-Большого гиперкуба (ещё m слоёв). Ребра гиперкубов – целые числа. Все слои следуют последовательно и непрерывно, пронумерованы натуральными числами. Чтобы правая и левая часть уравнения Ферма были равны, необходимо соблюдение ряда условий:
с одной стороны:
центральная симметричность фигуры в виде трёх вложенных гиперкубов, непрерывность следования слоёв, их полное заполнение гиперкубиками
с другой стороны:
объём a-Малого гиперкуба равен объему множества точек между с-Большим и b-Средним гиперкубами.
При n> 2 эти условия являются взаимоисключающими и невыполнимы.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++
Легко убедиться на примере любой (обозначается как ∀) Пифагоровой тройки, что последнее условие, в случае такой тройки, выполняется в двумерном пространстве, т.е. для вписанных друг в друга квадратов. Формула теоремы Ферма – это аналог теоремы Пифагора, но в n-мерном пространстве. Если хотя бы Пифагорова тройка в n-мерном пространстве найдется, то Теорема Ферма и его уравнение будут опровергнуты.
– Пока все понятно, кроме слоя, что это такое? – спросил Борщов.
– Строго математически мы вводим определение слоя S как множества точек в n – мерном пространств, полученное в результате разности множеств точек вписанных друг в друга гиперкубов, с общей вершиной, рёбра которых отличаются на единицу, как на экзамене ответил Матвей (см. Рис 2.2.).
– А если не вершины, а центры гиперкубов общие, – указав на шахматную доску, сказала Татьяна, – то рёбра гиперкубов, ограничивающие слой будут отличаться на двойку?
– Абсолютно точно! – кивнул Матвей. – Но мы будем выбирать то или иное множество фигур.
1) множество фигур «начало координат в вершинах» вписанными друг в друга гиперкубов, совмещенных по произвольной вершине
или
2) в «начало координат в центре всех трёх гиперкубов an, bn, cn».
Обе геометрических фигуры соответствующих каждому из только то заданных множеств точек пространства, преобразуются друг в друга за счет отражений от гиперплоскостей, перпендикулярных каждой из n осей координат либо рассечения фигуры на «гиперквадранты» и масштабирования. Вспомните наши эксперименты с салфеткой! – Матвей схватил со стола сложенную дважды пополам салфетку и продемонстрировал ее всей компании.
– Под термином гиперквадрант понимается, например, подпространство только неотрицательных значений … – Матвей приготовился выдать строгое определение но его перебили.
– Проще говоря это салфетка сложенная на четыре части, а точнее её малый квадратик? – задала наводящий вопрос Татьяна.
– Да
– Ну так и скажи, мы же не на экзамене – назидательно сказала Татьяна.
– Итак, коллеги, для начала неплохо, очень даже неплохо, начала подытоживать встречу Борщов. – давайте опишем какое примерно это должно быть это направление, вернее, где может скрываться доказательство? И Борщов, пригласил широким жестом высказаться каждого.
Оно должно быть очевидным, и на первый взгляд, совершенно невероятным
– задумчиво произнесла Татьяна.
Его можно понять с минимальным количеством формул или совсем без формул
– добавил Матвей.
Все посмотрели на одиннадцатилетнего Артура – собравшись духом, он каким-то официальным тоном сказал:
Такое доказательство должен понимать любой потребитель, категории двенадцать плюс!
– Вот как глубоко в нашу жизнь проник маркетинг! – назидательно шутя заметила Татьяна. А в целом, – продолжала Татьяна: хорошо бы провести опрос среди знакомых и знакомых их знакомых (вот здесь как раз и могут пригодиться социальные сети!), кто сможет пересказать по памяти доказательство Великой теоремы Ферма? За исключением от силы сотни математиков – Гуру в теории чисел и лиц с фотографической памятью, способных точно запомнить полторы сотни страниц текста, этого не сможет сделать никто!
– Именно поэтому поиск Истины и наглядных доказательств нельзя остановить с присуждением Абелевской премии, заметил Борщов.
Итак группа выработала основные правила
встречаться каждую в неделю;
терпеливо перебирать разные варианты, даже немного крейзи, тщательно прорабатывать детали;
«не залезать в дебри»;
искать простое наглядное доказательство, понятное школьнику средних классов школы;
и не посещать Всемирную паутину, соцсети без самой крайней необходимости.
Последнее условие выдвинул Борщов, объясняя это тем, что Всемирная паутина и антисоциальные, как он любил их называть, сети, особенно те, которые выполаскивают мозги, наполняя их приколами и всяким мусором, сильно ограничивают наше творческое воображение. Во-первых, это отрицательный опыт других «лузеров» (Борщов при этом выразительно посмотрел на Артура), которые искомого доказательства не нашли, и наводят на искателей излишние комплексы во-вторых, это постоянные манипуляции сознания и сбивание с толку. Какие-то всезнайки постоянно кричат: это невозможно, это делается лишь так-то и так-то, только у нас о ты, ничтожнейший, получишь шанс со скидкой и так далее… Не даром старина Манфред Шпитцер написал свою скандальную книгу: «Цифровая деменция или антимозг»
[Шпитцер Манфред Антимозг: цифровые технологии и мозг/ Манфред Шnитцер; пер. с немецкого А. Г. Гришина – Москва: АСТ, 2014. – 288 с. ISBN 978-5-17-079721-9].
Ребята приводили аргументы против цифрового «аскетизма», восхваляя работу в группах в коллаборации, плюсы Всемирной паутины, но затем согласились, что не будут читать, смотреть ничего кроме недостающей литературы и переводов на английский язык специальных терминов, на месяц или даже больше заблокируют свои аккаунты в сетях для того, чтобы мобилизоваться к достижению общей цели. Матвей не смог сдержать улыбки вспоминая кличку Борщова – Борщ или профессор кислых щей: когда надо профессор мог быть удивительно занудным и упрямым.
Александр Николаевич молча положил кнопочный мобильник на стол и кивнул на него: дескать, обычной звонилки достаточно, в крайнем случае SMS.
– Словом, звучит все это грандиозно! – прихлопнул в ладоши профессор, и ребята знали: это означает конец диалога и одновременно то, что он доволен встречей.
И тут раздался сигнал бип-бип на часах у Матвея, который вскочил словно ошпаренный кипятком: Ой, у нас начинается День физики в нашей школе, а наш класс отвечает за расстановку приборов для демонстрации экспериментов, у меня осталось уже меньше часа, так что я лечу!
И Матвей оставил дружную компанию единомышленников на самом интересном моменте.
– Ну, уважаемые коллеги, какие ещё у нас остались вопросы? – обращаясь к Татьяне и Артуру подытожил Борщов.
– А почему Вы называете это место Собачьи бутерброды? – совершенно серьёзно спросил Артур.
Татьяна широко улыбнулась.
– Так называется эту пищу на её родине, – пояснил профессор. – Есть такая старая добрая американская комедия Выйти замуж за миллионера, вырастешь – посмотришь :-)