Читать книгу Биохакинг - Олли Совиярви - Страница 17

02. Питание
Строение и функции пищеварительной системы
Микробиом – ключ к здоровому желудку

Оглавление

Микробиом – совокупность колоний симбиотических (обе стороны получают пользу друг от друга), условно-патогенных (только одна из сторон получает пользу от второй) и патогенных (вызывающих заболевание) микроорганизмов. Эти колонии существуют, к примеру, на поверхности кожи, на слизистой оболочке рта и кишечника, на конъюнктиве глаз.

ЗНАЕТЕ ЛИ ВЫ, ЧТО

ЛИШЬ 40–50 % ВАШИХ КЛЕТОК – «ЧЕЛОВЕЧЕСКИЕ»? ОСТАЛЬНЫЕ 50–60 % – ЭТО КЛЕТКИ БАКТЕРИЙ, ГРИБОВ И МИКРООРГАНИЗМОВ, ЖИВУЩИХ В ВАШЕМ ОРГАНИЗМЕ[107]. В СЛУЧАЕ С ГЕНАМИ РАЗНИЦА ГОРАЗДО СУЩЕСТВЕННЕЕ – НА КАЖДЫЙ ЧЕЛОВЕЧЕСКИЙ ГЕН ПРИХОДИТСЯ 100 ГЕНОВ МИКРООРГАНИЗМОВ[108].

В кишечнике живет около 500–1000 различных видов бактерий. Самый распространенный вид бактерий в кишечнике – это бактероиды (Bacteroides), клостридии (Clostridium), фузобактерии (Fusobacterium), бифидобактерии (Bifidobacterium) и аккермании (Akkermansia muciniphila). Другие известные штаммы – эшерихия (Escherichia) и лактобактерии (Lactobacillus)[109]. Бифидобактерии и лактобактерии наиболее широко изучены[110] и часто присутствуют в пробиотиках, но сейчас все большее значение уделяется балансу всей совокупности микробиома и поддержанию его разнообразия.

Функции бактерий в кишечнике – расщепление углеводов (брожение), которые организм не может переварить иначе. Благодаря этому образуются короткоцепочечные жирные кислоты – источники энергии в организме. Например, бутират используется поверхностными добавочными (слизистыми) клетками кишечника, пропионат – печенью, а ацетат – клетками мышц[111].

Именно поэтому состояние кишечника также существенно влияет на выделение энергии. Бактериальная микрофлора кишечника способствует всасыванию витаминов группы К, B и определенных минералов (магний, кальций и железо), синтезу желчных кислот, а также помогает работе иммунной системы. Кроме того, она действует как защитный барьер против различных патогенов[112].

АНТИБИОТИКИ ПОРАЖАЮТ БАКТЕРИАЛЬНУЮ МИКРОФЛОРУ КИШЕЧНИКА

Один курс приема антибиотиков может поразить 30 % бактериальной микрофлоры кишечника и нарушить бактериальный баланс на период от шести месяцев до двух лет[113]. Но, если в кишечник попадают такие патогенные бактерии, как сальмонелла (Salmonella), шигелла (Shigella), кампилобактер (Campylobacter) или иерсиния (Yersinia), антибиотики необходимы. Наряду с вирусами эти бактерии наиболее частые возбудители «диареи путешественников» и кишечных инфекций.

В зависимости от индивидуального баланса микрофлоры бесконтрольный прием антибиотиков может спровоцировать антибиотик-ассоциированную диарею[114] и псевдомембранозный колит, вызванный бактерией Clostridium difficile[115], а также избыточный рост других вредных бактерий[116]. Более активное применение антибиотиков также привело к развитию антибиотикорезистентных бактерий[117].

ОСЬ КИШЕЧНИК – МОЗГ

Ось кишечник – мозг представляет собой неврологическую и биохимическую связь между энтеральной нервной системой кишечника и центральной нервной системой. Кишечный микробиом (бактериальная микрофлора) влияет на функционирование иммунной системы, нервной системы[118], поведение[119], стрессоустойчивость[120], настроение[121] и такие состояния, как тревожность и депрессия[122]. Именно в последние двадцать лет ученые пришли к пониманию важности кишечника для состояния мозга.


Исследователи из Алабамского университета, судя по всему, близки к прорыву в области изучения мозга. Согласно предварительному исследованию (2018), они обнаружили в мозге живые бактерии. Бактерии были преимущественно трех типов, свойственных кишечнику: фирмикуты (Firmicutes), протеобактерии (Proteobacteria) и бактероиды (Bacteroidetes). Это открытие еще предстоит повторить и подтвердить другим группам исследователей[123].

Мозг сообщается с кишечником по двум автономным ветвям нервной системы: ГГНО (гипоталамо-гипофизарно-надпочечниковая ось) и ось симпатическая нервная система – надпочечники, регулирующая лимфатическую систему кишечника[124].

Важно понимать постоянную природу сообщения между мозгом и кишечником, а также учитывать механизмы ее двусторонней регуляции. Вот, скажем, показательный пример – сильная эмоциональная реакция вызывает у человека ощущение «бабочек в животе»[125]. И наоборот, кишечник посылает мозгу информацию о съеденной пище и о том, как она влияет на кишечник.

Первые признаки нарушенной мозговой функции также могут отразиться на пищеварении: в таких случаях отмечаются нарушенная секреция панкреатических ферментов, слабая активность желчного пузыря и общий функциональный дисбаланс кишечника[126].


ПОРОЧНЫЙ КРУГ

Двусторонняя природа сообщения между мозгом и кишечником способна привести к так называемому порочному кругу (circulus vitiosus).


Устойчивое воспалительное состояние или дисбаланс кишечника могут вызвать ухудшение связей между энтероцитами на поверхности кишечника, провоцируя кишечную проницаемость. Функциональные нарушения в работе мозга или вызванная стрессом гиперактивность симпатической нервной системы таким же образом угнетают функцию блуждающего нерва[127]. Это нарушает работу иммунной системы и ухудшает циркуляцию крови в кишечнике, что, в свою очередь, повышает разрастание вредоносных кишечных бактерий и грибков[128]. Они могут повредить поверхностный слой слизистой и усугубить проницаемость кишечника (синдром «дырявого кишечника»)[129],[130].


Устойчивое неспецифическое воспаление в организме также может усугубить проницаемость кишечника[131],[132]. Это приводит к выбросу цитокинов (медиаторов воспаления) в кишечнике[133]. Из-за проницаемости кишечника вещества-медиаторы могут проникать в кровоток и в мозг через гематоэнцефалический барьер (ГЭБ). Воспаление делает проницаемым и ГЭБ, что, в свою очередь, активизирует клетки соединительной ткани мозга, также известные как микроглия[134]. Результат – хроническое воспалительное состояние мозга, которое нарушает функцию мозга и может вызывать тревогу и депрессию[135]. Это замыкает порочный круг, и ситуация будет только ухудшаться, если не принять меры по ее исправлению (как, например, предложенные в настоящей книге).



107

National Institutes of Health. (2012). Human Microbiome Project defines normal bacterial makeup of the body. Bethesda: National Human Genome Research Institute. [date of reference: 26.8.2014]

108

Ley, R. & Peterson, D. & Gordon, J. (2006). Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124 (4): 837–848. Review.

109

Guarner, F. & Malagelada, J. (2003). Gut flora in health and disease. The Lancet 361 (9356): 512–519. Review.

110

Sonomoto, K. & Yokota, A. (2011). Lactic Acid Bacteria and Bifidobacteria. Current Progress in Advanced Research. Norfolk: Caister Academic Press.

111

Wong, J. & de Souza, R. & Kendall, C. & Emam, A. & Jenkins, D. (2006). Colonic health: fermentation and short chain fatty acids. Journal of Clinical Gastroenterology 40 (3): 235–243. Review.

112

Guarner, F. & Malagelada, J. (2003). Gut flora in health and disease. The Lancet 361 (9356): 512–519. Review.

113

Jernberg, C. & Löfmark, S. & Edlund, C. & Jansson, J. (2010). Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156 (Pt 11): 3216–3223.

114

Beaugerie, L. & Petit, J. (2004). Microbial-gut interactions in health and disease. Antibiotic-associated diarrhoea. Best Practice and Research Clinical Gastroenterology 18 (2): 337–352. Review.

115

Thomas, C. & Stevenson, M. & Williamson, D. & Riley, T. (2002). Clostridium difficile-associated diarrhea: epidemiological data from Western Australia associated with a modified antibiotic policy. Clinical Infectious Diseases 35 (12): 1457–1462.

116

Dethlefsen, L. & Huse, S. & Sogin, M. & Relman, D. (2008). The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biology 6 (11): e280.

117

World Health Organization. (2014). WHO’s first global report on antibiotic resistance reveals serious, worldwide threat to public health. Geneva: WHO. [date of reference: 26.8.2014]

118

Forsythe, P. & Kunze, W. (2013). Voices from within: gut microbes and the CNS. Cellular and Molecular Life Sciences 70 (1): 55–69. Review.

119

Cryan, J. & Dinan, T. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience 13 (10): 701–712. Review.

120

Cryan, J & O’Mahony, S. (2011). The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterology and Motility 23 (3): 187–192.

121

Grenham, S. & Clarke, G. & Cryan, J. & Dinan, T. (2011). Brain-gut-microbe communication in health and disease. Frontiers in Physiology 2: 94.

122

Foster, J. & McVey Neufeld, K. (2013). Gut-brain axis: how the microbiome influences anxiety and depression. Trends in Neurosciences 36 (5): 305–312. Review.

123

Roberts, R. & Farmer, C. & Walker, C. (2018). The human brain microbiome; there are bacteria in our brains!. Program No. 594.08. Neuroscience Meeting Planner. San Diego, CA: Society for Neuroscience, 2018. Online.

124

Mayer, E. (2011). Gut feelings: the emerging biology of gut-brain communication. Nature Revies Neuroscience 12 (8): 453–466. Review.

125

Welgan, P. & Meshkinpour, H. & Beeler, M. (1988). Effect of anger on colon motor and myoelectric activity in irritable bowel syndrome. Gastroenterology 94 (5 Pt 1): 1150–1156.

126

Travagli, R. & Hermann, G. & Browning, K. & Rogers, R. (2006). Brainstem circuits regulating gastric function. Annual Review of Physiology 68: 279–305. Review.

127

Mayer, E. (2000). The neurobiology of stress and gastrointestinal disease. Gut 47: 861–869.

128

Hughes, D. & Sperandio, V. (2008). Inter-kingdom signalling: communication between bacteria and their hosts. Nature Reviews Microbiology 6: 111–120.

129

Fasano, A. (2012). Leaky gut and autoimmune diseases. Clinical Reviews in Allergy and Immunology 42 (1): 71–78.

130

Hollander, D. (1999). Intestinal permeability, leaky gut, and intestinal disorders. Current Gastroenterology Reports 1 (5): 410–416. Review.

131

Hietbrink, F. (2009). Systemic inflammation increases intestinal permeability during experimental human endotoxemia. Shock 32 (4): 374–378.

132

Frazier, T. & DiBaise, J. & McClain, C. (2011). Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. Journal of Parentereral and Enteral Nutrition 35 (5 Suppl): 14S–20S.

133

Neurath, M. (2014). Cytokines in inflammatory bowel disease. Nature Reviews Immunology 14: 329–342.

134

Aloisi, F. (2001) Immune function of microglia. Glia 36 (2): 165–179. Review.

135

Foster, J. & McVey Neufeld, K. (2013). Gut-brain axis: how the microbiome influences anxiety and depression. Trends in Neuroscience 36 (5): 305–312. Review.

Биохакинг

Подняться наверх