Читать книгу Snyder and Champness Molecular Genetics of Bacteria - Tina M. Henkin - Страница 49

DNA Structure

Оглавление

THE SCIENCE OF MOLECULAR GENETICS began with the determination of the structure of DNA. Experiments with bacteria and phages (i.e., viruses that infect bacteria) in the late 1940s and early 1950s, as well as the presence of DNA in chromosomes of higher organisms, had implicated this macromolecule as the hereditary material (see the introduction). In the 1930s, biochemical studies of the base composition of DNA by Erwin Chargaff established that the amount of guanine always equals the amount of cytosine and that the amount of adenine always equals the amount of thymine, independent of the total base composition of the DNA. In the early 1950s, X-ray diffraction studies by Rosalind Franklin and Maurice Wilkins showed that DNA is a double helix. Finally, in 1953, Francis Crick and James Watson put together the chemical and X-ray diffraction information in their famous model of the structure of DNA. This story is one of the most dramatic in the history of science and has been the subject of many historical treatments, some of which are listed at the end of this chapter.

Figure 1.1 illustrates the Watson-Crick structure of DNA, in which two strands wrap around each other to form a double helix. These strands can be extremely long, even in a simple bacterium, extending up to 1 mm—a thousand times longer than the bacterium itself. In a human cell, the strands that make up a single chromosome (which is one DNA molecule) are hundreds of millimeters, or many inches, long.

Snyder and Champness Molecular Genetics of Bacteria

Подняться наверх