Читать книгу Computer Aided Design and Manufacturing - Zhuming Bi - Страница 14
1.1.2 Scale and Complexity of Manufacturing
ОглавлениеFrom a system perspective, a manufacturing system can be described by the inputs, outputs, system components, and their relations, as shown in Figure 1.2. The system is modelled in terms of its information flow and materials flow, respectively. System inputs and outputs are involved at the boundaries of a manufacturing system in its surrounding business environment. For example, the materials from suppliers are system inputs and the final products delivered to customers are system outputs. System components include all of the manufacturing resources for designing, manufacturing, and assembling of products as well as other relevant activities such as transportations in the system. In addition, a virtual twin in the information flow is associated with a physical component in the materials flow for decision‐making supports of manufacturing businesses.
Figure 1.2 Description of a manufacturing system.
In the evolution of manufacturing technologies, the scale and complexity of manufacturing systems have been growing constantly. Note that both the scale and complexity of a system relates to the number and types of inputs, outputs, and system components that transform inputs to outputs. Figure 1.3 shows the impact of the evolution of system paradigms on the complexity of manufacturing systems (Bi et al. 2008). The evolution of system paradigms is divided into the phases of craft systems, English systems, American systems, lean production, flexible manufacturing systems (FMSs), computer integrated manufacturing (CIM), and sustainable manufacturing.
Figure 1.3 The growth of scale and complexity of manufacturing systems (Bi et al. 2014).
Historically, the manufacturing business began with craft systems where some crude tools were made from objects found in nature. The system inputs were simple objects and the requirements of the products were basic functions. In the 1770s, James Watt improved Thomas Newcomen's steam engines with separate condensers, which triggered the formation of English systems. In an English manufacturing system, machines partially replaced human operators for heavy and repetitive operations, the power supply became an essential part of the manufacturing source, and the production was scaled to make functional products for profit. In the 1800s, Eli Whitney introduced interchangeable parts in manufacturing that allowed all individual pieces of a machine to be produced identically. Thus, mass production became possible, the manufacturing processes began to be distributed, and system inputs in general assembly companies included parts and components. The criteria of system performance were prioritized with productivity and product quality. Mass production in the American system paradigm brought the rapid growth of manufacturing capacities that led to the saturation of manufacturing capacities in comparison with global needs. The global market became so competitive that the profit margin was such that without consideration of cost savings in the manufacturing processes profits would be insufficient to sustain manufacturing business. The lean production paradigm was conceived in Japan to optimize system operation by identifying and eliminating waste in production, thus reducing product cost to compensate for the squeezed profit margin. Most recently, sustainable manufacturing paradigms were developed to optimize manufacturing systems from the perspective of the product life cycle. This was driven by a number of factors, such as global warming, environmental degradation, and scarcity of natural resources. Manufacturing system paradigms are continuously evolving. The trend of the evolution in Figure 1.3 has shown that manufacturing systems are becoming more and more complicated in terms of the number of system parameters, the dependence on system parameters, and their dynamic characteristics with respect to time. The engineering education for human resources must evolve to meet the growth needs of the manufacturing industry.