Читать книгу Filosofía Fundamental, Tomo IV - Balmes Jaime Luciano - Страница 4
LIBRO OCTAVO.
LO INFINITO
CAPÍTULO IV.
EL LÍMITE
Оглавление[25.] Infinito parece expresar una negacion, puesto que equivale á no finito. Pero las negaciones no siempre son verdaderamente tales, aunque así lo indiquen las palabras: porque, si aquello que se niega es una negacion, el resultado es una afirmacion. Por esto suele decirse que dos negaciones afirman. Si alguno dice: no ha llovido; y otro contesta que no es verdad, niega la negacion del otro, pues que negar la proposicion: no ha llovido, es lo mismo que decir ha llovido, esto es, afirmar la lluvia. Así para conocer si la palabra infinito significa una verdadera negacion, es necesario saber qué se entiende por la palabra finito.
[26.] Finito es lo que tiene límite. Límite es el término mas allá del cual no hay nada del objeto limitado. Los límites de una línea son los puntos mas allá de los cuales la línea no se extiende; el límite de un número es el extremo mas allá del cual no se extiende el número; el límite de los conocimientos de un hombre es el punto á donde llegan, y del cual no pasan. Siendo el límite, negacion; negar el límite es negar la negacion, y de consiguiente afirmar.
[27.] Por estos ejemplos se echa de ver que el límite tomado en el sentido vulgar, expresa una idea algo distinta del límite definido por los matemáticos. Estos llaman límite á toda expresion finita, infinita ó nula, á la cual se puede acercar continuamente una cantidad, sin que jamás pueda alcanzarla. Así el valor 0/a es el límite del decremento de un quebrado, cuyo numerador es variable x/a; porque, suponiendo que x va menguando continuamente, el quebrado se acercará á la expresion 0/a, sin que jamás pueda llegar á confundirse con ella, mientras la cantidad x no se desvanezca del todo. Si suponemos (b+x)/a donde la x vaya decreciendo, la expresion se acercará continuamente á esta otra (b+0)/a = b/a, la cual será el límite del quebrado. Suponiendo la expresion a/x y que x va menguando, nos acercaremos continuamente a la expresion a/0 = ∞, valor infinito á que el quebrado no llegará nunca mientras x no se convierta en 0, lo que jamás podrá verificarse, habiendo de ser x una verdadera cantidad. Con estos ejemplos se ve por qué los matemáticos admiten límites finitos, infinitos, y nulos. Además se manifiesta tambien como en estos casos se toma la palabra límite, en un sentido diferente del vulgar, que es tambien el filosófico.
[28.] Límite pues, expresa una verdadera negacion; y así la palabra finito ó limitado envuelve por necesidad una negacion. No se limita lo que no es; por consiguiente, lo finito no puede ser una negacion absoluta. Esta seria la nada, y la nada no se llama finita. Luego en la idea de finito entran dos: 1.o ser, 2.o negacion de otro ser. Una línea de un pié envuelve dos cosas: el valor positivo de un pié, y la negacion de todos los otros valores fuera del de un pié. Luego lo finito en cuanto finito, envuelve una negacion referida á un ser. Si pudiésemos expresar en abstracto esta idea usando del término finidad, así como tenemos el de infinidad, diríamos que la finidad en sí, nada expresa, sino la negacion de ser referida á un ser.
[29.] De esto se infiere que la palabra infinito no es negativa; pues que con ella se niega una negacion; infinito es lo no finito, esto es lo que no tiene carencia de ser; y por consiguiente lo que posee todo el ser.
[30.] Tenemos pues alguna idea de lo infinito, y esta no es una pura negacion; sin embargo no se crea que con esto hemos llegado al último término del análisis de la idea de lo infinito. Mucho nos falta que andar, y despues de largas investigaciones es dudoso que obtengamos un resultado satisfactorio.