Читать книгу 3D Printing of Foods - C. Anandharamakrishnan - Страница 32
1.10 Comparison Between Food 3D Printing and Robotic Food Manufacturing
ОглавлениеAlthough food 3D printing and robotics‐based food manufacturing processes were aimed at automation and reduction of workload, there exists a distinct difference between them. The former technology relies upon the consumer’s needs allowing the users to manipulate ingredients while the latter involves the replacement of labour‐intensive operations and automation of manual processes (Sun et al. 2018a). Baked recipes and confectionery products such as sugar cubes can be prepared either by food printing or robotics‐based manufacturing. Basic ingredients remain to be same for both these processes, however, certain modifications are required for materials to be used in food printing. These modifications aid in tailoring the rheological and post‐deposition requirements for achieving a stable printed food. Applications of digital gastronomy in food 3D printing help in the fabrication of foods with a different eating experience that goes beyond the taste encompassing all aspects of gastronomy. For instance, robotic‐based chocolate manufacturing employs cocoa powder, butter, sugar, and full cream milk as raw materials; however, food printing uses the commercially available readymade chocolates (Sun et al. 2015b).
In terms of market value, the critical factors that distinguish food printing from conventional food processing techniques are customization, complexity, and production volume (Conner et al. 2014; Petrick and Simpson 2013). In the case of conventional processing, the unit cost would increase with the increase in complexity/ customization. Since the addition of complex designs requires more tools, energy, and labour. On the other hand, the unit cost would decrease with production volume without considering the complexity. In contrast to this scenario, the unit cost remains stable irrespective of the increase in complexity/ customization for 3D printing. This was because any changes in design could be done in the 3D model before printing which is not the case in conventional manufacturing. This feature adds value to food 3D printing to emerge as a promising technology that balances the cost as well as production volume without compromising the structural complexity of the designs (Pinkerton 2016).